We present a theoretical study of the effects of collisions with water vapor molecules on the absorption, around 4 μm, in both the high frequency wing of the CO2 ν3 band and the collision-induced fundamental band of N2. Calculations are made for the very first time, showing that predictions based on classical molecular dynamics simulations enable, without adjustment of any parameter, very satisfactory agreement with the few available experimental determinations. This opens the route for a future study in which accurate temperature-dependent (semi-empirical) models will be built and checked through comparisons between computed and measured atmospheric spectra. This is of interest since, as demonstrated by simulations, neglecting the humidity of air can lead to significant modifications of the atmospheric transmission (and thus also emission) between 2000 and 2800 cm−1.
The purpose of The Journal of Chemical Physics is to bridge a gap between journals of physics and journals of chemistry by publishing quantitative research based on physical principles and techniques, as applied to "chemical" systems. Just as the fields of chemistry and physics have expanded, so have chemical physics subject areas, which include polymers, materials, surfaces/interfaces, and biological macromolecules, along with the traditional small molecule and condensed phase systems. The Journal of Chemical Physics (JCP) is published four times per month (48 issues per year) by the American Institute of Physics.
The American Institute of Physics (AIP) is a 501(c)(3) not-for-profit membership corporation created for the purpose of promoting the advancement and diffusion of the knowledge of physics and its application to human welfare. It is the mission of the Institute to serve the sciences of physics and astronomy by serving its member societies, by serving individual scientists, and by serving students and the general public.
As a "society of societies," AIP supports ten Member Societies and provides a spectrum of services and programs devoted to advancing the science and profession of physics. A pioneer in digital publishing, AIP is also one of the world's largest publishers of physics journals and produces the publications of more than 25 scientific and engineering societies through its New York-based publishing division.
Classical molecular dynamics simulations have been performed for gaseous CO2 starting from an accurate anisotropic intermolecular potential. Through calculations of the evolutions of the positions and orientations of a large number of molecules, the time evolutions of the permanent and collision-induced electric dipole vector and polarizability tensor are obtained. These are computed from knowledge of static molecular parameters taking only the leading induction terms into account. The Laplace transforms of the auto-correlation functions of these tensors then directly yield the light absorption and scattering spectra. These predictions are, to our knowledge, the first in which the contributions of permanent and collision-induced tensors are simultaneously taken into account for gaseous CO2, without any adjusted parameter. Comparisons between computations and measurements are made for absorption in the region of the ν3 infrared band and for depolarized Rayleigh scattering in the roto-translational band. They demonstrate the quality of the model over spectral ranges from the band center to the far wings where the spectrum varies by several orders of magnitude. The contributions of the permanent and interaction-induced (dipole and polarizability) tensors are analyzed for the first time, through the purely permanent (allowed), purely induced, and cross permanent/induced components of the spectra. It is shown that, while the purely induced contribution is negligible when compared to the collision-broadened allowed component, the cross term due to interferences between permanent and induced tensors significantly participates to the wings of the bands. This successfully clarifies the long lasting, confusing situation for the mechanisms governing the wings of the CO2 spectra considered in this work