Using both a difference frequency spectrometer and a Fourier transform spectrometer, we have measured transitions in the 12 20 <-- 01 10 band of carbon dioxide at room temperature and pressures up to 19 atm. The low-pressure spectra were analyzed using a variety of standard spectral profiles, all with an asymmetric component to account for weak line mixing. For this band, we have been able to retrieve experimental line strengths and the broadening and weak mixing parameters. In this paper we also compare the suitability of the energy-corrected sudden model to predict mixing in the two previously measured Q branches 20 00<-- 01 10, the 11 10<--00 00, and the present Q branch of pure CO2, all at room temperature.
The purpose of The Journal of Chemical Physics is to bridge a gap between journals of physics and journals of chemistry by publishing quantitative research based on physical principles and techniques, as applied to "chemical" systems. Just as the fields of chemistry and physics have expanded, so have chemical physics subject areas, which include polymers, materials, surfaces/interfaces, and biological macromolecules, along with the traditional small molecule and condensed phase systems. The Journal of Chemical Physics (JCP) is published four times per month (48 issues per year) by the American Institute of Physics.
The American Institute of Physics (AIP) is a 501(c)(3) not-for-profit membership corporation created for the purpose of promoting the advancement and diffusion of the knowledge of physics and its application to human welfare. It is the mission of the Institute to serve the sciences of physics and astronomy by serving its member societies, by serving individual scientists, and by serving students and the general public.
As a "society of societies," AIP supports ten Member Societies and provides a spectrum of services and programs devoted to advancing the science and profession of physics. A pioneer in digital publishing, AIP is also one of the world's largest publishers of physics journals and produces the publications of more than 25 scientific and engineering societies through its New York-based publishing division.