The IR absorption of the pure CO2 gas in the region of 15 μm was examined. A special attention was given to the line mixing effect that influences the spectral shape of the vibration–rotation absorption bands in the Q-branch regions. Two methods in shape description were analyzed. The first method uses the Rosenkranz line shapes with the line mixing parameters, which are found from an empirical rotational relaxation matrix. The second method is based on the strong collision model with adjusted branch coupling (ABC-model). The merits and the demerits of these two methods are discussed, and the results of the corresponding calculations are compared to the measured shapes. It is inferred that the ABC-model for the absorption coefficient calculations can be successfully applied for solving the non-LTE radiative transfer problem in CO2 bands in the atmospheres of Earth-like planets.
Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer:
As the world’s leading publisher of science and health information, Elsevier serves more than 30 million scientists, students, and health and information professionals worldwide. We are proud to play an essential role in the global science and health communities and to contribute to the advancement of these critical fields. By delivering world-class information and innovative tools to researchers, students, educators and practitioners worldwide, we help them increase their productivity and effectiveness. We continuously make substantial investments that serve the needs of the global science and health communities.