In paper I of this series, important deviations from an additive superposition of Lorentzian profiles were experimentally evidenced in the 00°3–00°0 band of CO2 in He. All the observed deviations are explained by the collision‐induced line mixing effects which schematically transfer intensity from the wing of the band to its central part. The IOS approximation has been found to be insufficient while, the ECS approximation leads to theoretical predictions in good agreement with the experimental data over extended ranges of frequency and perturber pressure. However it must be emphasized that it has been necessary to resort to the method in current use for the determination of the fundamental rates, an ad hoc adjustement starting from the observed linewidths.
The purpose of The Journal of Chemical Physics is to bridge a gap between journals of physics and journals of chemistry by publishing quantitative research based on physical principles and techniques, as applied to "chemical" systems. Just as the fields of chemistry and physics have expanded, so have chemical physics subject areas, which include polymers, materials, surfaces/interfaces, and biological macromolecules, along with the traditional small molecule and condensed phase systems. The Journal of Chemical Physics (JCP) is published four times per month (48 issues per year) by the American Institute of Physics.
The American Institute of Physics (AIP) is a 501(c)(3) not-for-profit membership corporation created for the purpose of promoting the advancement and diffusion of the knowledge of physics and its application to human welfare. It is the mission of the Institute to serve the sciences of physics and astronomy by serving its member societies, by serving individual scientists, and by serving students and the general public.
As a "society of societies," AIP supports ten Member Societies and provides a spectrum of services and programs devoted to advancing the science and profession of physics. A pioneer in digital publishing, AIP is also one of the world's largest publishers of physics journals and produces the publications of more than 25 scientific and engineering societies through its New York-based publishing division.