We develop the basic formalism of a far-wing line shape theory that satisfies the detailed balance principle. For molecular systems of interest, e.g., CO2 –Ar at room temperature or higher, there are many individual vibration–rotational lines in a given band and many bands in the spectrum. In such cases, one must make additional approximations in order to carry out accurate calculations of the absorption coefficient using a reasonable amount of computer time. In the present paper, we discuss two such simplifications: the frequency detuning approximation of the line-coupling functions and the band-average approximation. We then apply the theory to a calculation of the far-wing absorption of the ν3 band of CO2 perturbed by Ar, successively including the effects of more lines in the calculations by increasing J max from 40 to 108. From the results of this work, we find that the frequency detuning approximation is good only for frequencies of interest far from the band center. In addition, we find that contrary to previous assertions of the adequacy of the first-order band-average approximation, the higher-order terms are significant. To a good approximation these can be incorporated by introducing a frequency shift in the first-order results so that extensive additional calculations are not required.
The purpose of The Journal of Chemical Physics is to bridge a gap between journals of physics and journals of chemistry by publishing quantitative research based on physical principles and techniques, as applied to "chemical" systems. Just as the fields of chemistry and physics have expanded, so have chemical physics subject areas, which include polymers, materials, surfaces/interfaces, and biological macromolecules, along with the traditional small molecule and condensed phase systems. The Journal of Chemical Physics (JCP) is published four times per month (48 issues per year) by the American Institute of Physics.
The American Institute of Physics (AIP) is a 501(c)(3) not-for-profit membership corporation created for the purpose of promoting the advancement and diffusion of the knowledge of physics and its application to human welfare. It is the mission of the Institute to serve the sciences of physics and astronomy by serving its member societies, by serving individual scientists, and by serving students and the general public.
As a "society of societies," AIP supports ten Member Societies and provides a spectrum of services and programs devoted to advancing the science and profession of physics. A pioneer in digital publishing, AIP is also one of the world's largest publishers of physics journals and produces the publications of more than 25 scientific and engineering societies through its New York-based publishing division.