Theoretical results for the far-wing line shapes and corresponding absorption coefficients in the high-frequency wing of the ν3 fundamental band of self-broadened CO2 are presented for a number of temperatures between 218 and 751 K. These first-principles calculations are made assuming binary collisions within the framework of a quasi-static theory with a more accurate interaction potential than in previous calculations. The theoretical results are compared with existing laboratory data and are in good agreement for all the temperatures considered.
Founded in 1916, the Optical Society of America (OSA) was organized to increase and diffuse the knowledge of optics, pure and applied; to promote the common interests of investigators of optical problems, of designers and of users of optical apparatus of all kinds; and to encourage cooperation among them. The purposes of the Society are scientific, technical and educational.
The Optical Society of America brings together optics and photonics scientists, engineers, educators, and business leaders. OSA's membership totals 15,500 individuals from over 95 countries. Approximately 47% of the Society's members reside outside the United States.
The temperature dependence of the high frequency far wings of the self-broadened CO2 lines has been investigated in the 2400–2600-cm-1 spectral region. The temperature dependence of the corrective shape factor X(σ,T) is demonstrated for the first time.