We present high-density experimental and theoretical results on CO2---Ar gas-phase absorption in the ν3 and 3ν3 infrared bands. Measurements have been made at room temperature for pressures up to 1000 bar in both the central and wing regions of the bands. A non-linear perturber density dependence of the absorption, clearly shown in the far wing, is attributed to the finite volume of the molecules. Furthermore, experiments show vibrational dephasing and narrowing effects. We have performed line-mixing computations based on the Energy Corrected Sudden approximation (ECS impact model). Significant discrepancies between experimental and calculated spectra appear when pressure increases. We then tested the influence of the finite duration of collision by using interpolations between ECS and quasi-static calculations, and we have evaluated the sensitivity of the band profiles to the interbranch mixing effects. Finally, an effective width is used in order to take other effects into account.
Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer:
As the world’s leading publisher of science and health information, Elsevier serves more than 30 million scientists, students, and health and information professionals worldwide. We are proud to play an essential role in the global science and health communities and to contribute to the advancement of these critical fields. By delivering world-class information and innovative tools to researchers, students, educators and practitioners worldwide, we help them increase their productivity and effectiveness. We continuously make substantial investments that serve the needs of the global science and health communities.
The shapes of the CO, v3, CO2, and v3 N2O fundamental vibration-rotation bands have been studied at various temperatures and in the presence of several perturbing gases. Also the half-widths of CO vibration-rotation lines have been measured at 78 K. In the region of line wings, the measured absorption coefficients deviate from those given by the superposition of Lorentzian profiles. These deviations are explained by the collision-induced line interference that causes redistribution of absorption inside the band. A theory of line mixing is formulated which is based on Markov approximation and on the strong collision model. Simple analytical expressions are obtained for the band shape. The computed shapes are in satisfactory agreement with the experimental results. The deviations from the Lorentz absorption observed in pure CO and in CO-N2 at low temperature are partially ascribed to the formation of van der Waals dimers.