The ν2 and 3ν3 bands of CO2 in helium baths at 193 K have studied with a Fourier transform interferometer. The behavior of the band shapes has been explored at moderate densities. The energy corrected sudden (ECS) approximation is used to model the relaxation matrix in order to account for line mixing effects. The basis cross-sections were calculated with the simple power law (P). Computed spectra are in good agreement with the observed ones. Measured broadening coefficients are also comparable with the ones derived from the ECS-P model.
Chemical Physics Letters publishes brief reports of original research on the structures, properties and dynamics of molecules, solid surfaces, interfaces, condensed phases, polymers, nanostructures and biomolecular systems. Criteria for publication are quality, urgency and impact. Further, experimental results reported in the journal have direct relevance for theory, and theoretical developments or non-routine computations relate directly to experiment. Manuscripts must satisfy these criteria and should not be minor extensions of previous work or just descriptions of the synthesis of molecules or materials.
As the world’s leading publisher of science and health information, Elsevier serves more than 30 million scientists, students, and health and information professionals worldwide. We are proud to play an essential role in the global science and health communities and to contribute to the advancement of these critical fields. By delivering world-class information and innovative tools to researchers, students, educators and practitioners worldwide, we help them increase their productivity and effectiveness. We continuously make substantial investments that serve the needs of the global science and health communities.