Solar occultation spectra obtained with a balloon-borne interferometer have been used to study continuous absorption by N2 and CO2 near 2400 cm-1 in the lower stratosphere. Synthetic continuum transmittances, calculated from published coefficients for far-wing absorption by CO2 lines and for pressure-induced absorption by the fundamental band of N2, are in fair agreement with the observed stratospheric values. The continuum close to the ν3 R-branch band head of CO2 is sensitive to the CO2 far-wing line shape. Therefore, given highly accurate knowledge of the N2 continuum from laboratory data, high-resolution stratospheric spectra provide a sensitive means for in situ testing of various air-broadened CO2 line shapes at low temperatures.
Founded in 1916, the Optical Society of America (OSA) was organized to increase and diffuse the knowledge of optics, pure and applied; to promote the common interests of investigators of optical problems, of designers and of users of optical apparatus of all kinds; and to encourage cooperation among them. The purposes of the Society are scientific, technical and educational.
The Optical Society of America brings together optics and photonics scientists, engineers, educators, and business leaders. OSA's membership totals 15,500 individuals from over 95 countries. Approximately 47% of the Society's members reside outside the United States.
Quantitative absorpance measurements have been made in pure CO2 and mixtures of CO2 with N2 and O2 in a 10 m White Perkin-Elmer cell. With absorbing paths up to 50 m-atm, results have been obtained from the band head at 2397 cm-1 to 2575 cm-1. The continuous absorption, which is due to the extreme tails of the strong lines in the v3 band centered at 2349 cm-1, is much less than calculated with the Lorentz line shape. A good fit with the data is obtained with an empirical line-shape which retains the Lorentz pressure dependence but requires a nearly exponential modification of the frequency dependence.