The carbon dioxide dimer spectroscopic patterns are retrieved from the analysis of collision-induced absorption (CIA) spectral bandshape at room temperature. It is shown that the use of the simplified model based on the symmetric-top approximation allows roughly consistent simulation of the observed (CO2)2 dimer spectrum. The rotational constants obtained can be considered as effective thermally averaged constants which characterize dimeric structure, strongly distorted from the ground state. The overall CIA bandshape and the integrated intensity of absorption are broken down into partial contributions from tightly bound and metastable dimers and free-pair states. This approach is shown to be in agreement with a wide range of independent spectroscopic and thermodynamic data.
The Journal of Molecular Spectroscopy presents experimental and theoretical articles on all subjects relevant to molecular spectroscopy and its modern applications. An international medium for the publication of some of the most significant research in the field, the Journal of Molecular Spectroscopy is an invaluable resource for astrophysicists, chemists, physicists, engineers, and others involved in molecular spectroscopy research and practice. Submit your Article online The 'Elsevier Editorial System' (or EES) is a web-based system with full online submission, review and status update capabilities. EES allows you to upload files directly from your computer. This is part of our on-going efforts to improve the efficiency and accuracy of our editorial procedures and the quality and timeliness of the manuscripts published.
former Academic Press
As the world’s leading publisher of science and health information, Elsevier serves more than 30 million scientists, students, and health and information professionals worldwide. We are proud to play an essential role in the global science and health communities and to contribute to the advancement of these critical fields. By delivering world-class information and innovative tools to researchers, students, educators and practitioners worldwide, we help them increase their productivity and effectiveness. We continuously make substantial investments that serve the needs of the global science and health communities.