The collision-induced absorption of gaseous CO2is the primary source of far-infrared opacity of the atmosphere of Venus. At the temperatures and densities of the venusian atmosphere, the absorption is due mainly to binary collisions of CO2molecules. Using a realistic anisotropic intermolecular potential and assuming the absorbing dipole to be due to the electrostatic induction and a quantum overlap, a series of molecular dynamics simulations were performed for the temperature range 200 to 800 K, and the roto-translational collision-induced absorption spectra at frequencies from 0 to 250 cm−1were derived. The absorption coefficient in the submillimeter region, used in constituency retrieval studies, decreases more than 10 times in the temperature range 200 to 800 K. On the other hand, the absorption coefficient at 800 K and at the frequency range above 150 cm−1was found to be almost 10 times higher than at 200 K. Earlier works relied on experimental RT CIA data at a fixed temperature of 300 K. The new, temperature-dependent absorption bands may, when included in the analysis of the atmospheric radiative transfer of the planet, help explain the observed high far-infrared opacity of the lower layers of the atmosphere. To make the results of the simulations readily available for atmospheric abundance and radiative transfer analysis, an analytic model of the roto-translational collision-induced absorption spectral profile, applicable from 200 to 800 K, is being proposed here. The FORTRAN computer code of this newly developed model is available from the authors on request.
ICARUS is the official publication of the Division for Planetary Sciences of the American Astronomical Society and is dedicated to reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems.
Imprint: ACADEMIC PRESS
As the world’s leading publisher of science and health information, Elsevier serves more than 30 million scientists, students, and health and information professionals worldwide. We are proud to play an essential role in the global science and health communities and to contribute to the advancement of these critical fields. By delivering world-class information and innovative tools to researchers, students, educators and practitioners worldwide, we help them increase their productivity and effectiveness. We continuously make substantial investments that serve the needs of the global science and health communities.
The collision-induced spectra of C2N2 gas and a gaseous mixture of C2Nl and Ar at 298 K have been obtained in the spectral region below 120 cm-1 using far-infrared laser and microwave techniques as well as a Fourier-transform spectrometer. In addition, the collision-induced spectra of a gaseous mixture of CO2 and Ar are reported at temperatures of 233 and 298 K in the spectral region below 230 cm-1. The theoretical values for the spectral moments α1 and γ1 for CO2 are much smaller than the experimental values, as expected for a molecule with a relatively large quadrupole moment. However, for CO2-Ar mixtures, the agreement between the theoretically and experimentally determined spectral moments is relatively good, resulting in a value of 4.6 B for the quadrupole moment of CO2 instead of the generally accepted value of 4.3 B. The quadrupole moment of C2N, is estimated to be 6.2 ± 0.4 B from our data and the theory for the spectral moments, if a correction is made for an overestimate of the quadrupole moment similar to that obtained for the CO2-Ar mixture. This value is considerably smaller than a previously reported calculated result of 9.0 B. Line-shape expressions based on information theory (IT6) do not yield good agreement with experiment, a result that is attributed to the large anisotropy of the molecules.