Molecular spectroscopy Molecular spectroscopy
Guest | My Tasks
 Rus | Eng   
 |  Help
..Up


Composite plot
Figure 3. Зависимость функции k(n) в области крыла полосы ν3 СО2. Точки – эксперимент, кривые – расчет по модели  интерференции линий. n – число интерферирующих линий.
Dependence of the function k(n) in the wing region of the ν3 СО2 band. Points - experiment, curves - calculation by the line interference model. n is the number of interfering lines.
Defined Function = ln(κ),  k=Kexp(ν)/K
L
(ν), k- поправочная функция (correction factor).
Reference Composite plot
Cаттаров Х., Исследование инфракрасных спектров углекислого газа и фреонов в условиях, близких к атмосферным, Ленинград, Автореферат канд ф.-м. н., 1983, 18 С..
Coordinate system (Linear, Logarithmic)
Abscissa (X-axis)
System. Physical Quantity (Unit)
Wavenumber (cm⁻¹) Ordinate (Y-axis)
System. Physical Quantity (Unit)
Defined Function
Figure 3. Absorption coefficient. CO₂+Ar. Experiment. Зависимость коэффициентов поглощения от частоты в области крыла полосы ν3 СО2. Точки – эксперимент, кривые – расчет по формуле (9).
Frequency dependence of absorption coefficients in the region of the wing of the ν3 СО2 band. Points - experiment, curves - calculation by formula (9).
Commentary Additional description
Substance Ar + CO2 Method type Experimental
Temperature Method, Model, Approximation  
Pressure (total) Numerical array origin Digitized
Pressure (partial) Numerical array type Primary
Path Length  
Density
Wavenumber (T dependence)

Figure 3. Absorption coefficient. CO₂+CO₂. Experiment. Зависимость коэффициентов поглощения от частоты в области крыла полосы ν3 СО2. Точки – эксперимент, кривые – расчет по формуле (9).
Frequency dependence of absorption coefficients in the region of the wing of the ν3 СО2 band. Points - experiment, curves - calculation by formula (9).
Commentary Additional description
Substance CO2 Method type Experimental
Temperature Method, Model, Approximation  
Pressure (total) Numerical array origin Digitized
Pressure (partial) Numerical array type Primary
Path Length  
Density
Wavenumber (T dependence)
Fig.3_1 – CO2_CO2 experiment
Fig.3_2 – CO2_N2 experiment
Fig.3_3 – CO2_Ar experiment
Fig.3_4 – CO2_D2experiment
Fig.3_5 – CO2_H2 experiment
Fig.3_6 – CO2_He experiment
Fig.3_7 –calculation, n=24
Fig.3_8 –calculation, n=14
Fig.3_9 –calculation, n=8
Fig.3_10 –calculation, n=5
Figure 3. Absorption coefficient. CO₂+D₂. Experiment. Зависимость коэффициентов поглощения от частоты в области крыла полосы ν3 СО2. Точки – эксперимент, кривые – расчет по формуле (9).
Frequency dependence of absorption coefficients in the region of the wing of the ν3 СО2 band. Points - experiment, curves - calculation by formula (9).
Commentary Additional description
Substance CO2 + D2 Method type Experimental
Temperature Method, Model, Approximation  
Pressure (total) Numerical array origin Digitized
Pressure (partial) Numerical array type Primary
Path Length  
Density
Wavenumber (T dependence)
Fig.3_1 – CO2_CO2 experiment=
Fig.3_2 – CO2_N2 experiment=
Fig.3_3 – CO2_Ar experiment=
Fig.3_4 – CO2_D2experiment=
Fig.3_5 – CO2_H2 experiment
Fig.3_6 – CO2_He experiment
Fig.3_7 –calculation, n=24
Fig.3_8 –calculation, n=14
Fig.3_9 –calculation, n=8
Fig.3_10 –calculation, n=5
Figure 3. Absorption coefficient. CO₂+H₂. Experiment. Зависимость коэффициентов поглощения от частоты в области крыла полосы ν3 СО2. Точки – эксперимент, кривые – расчет по формуле (9).
Frequency dependence of absorption coefficients in the region of the wing of the ν3 СО2 band. Points - experiment, curves - calculation by formula (9).
Commentary Additional description
Substance CO2 + H2 Method type Experimental
Temperature Method, Model, Approximation  
Pressure (total) Numerical array origin Digitized
Pressure (partial) Numerical array type Primary
Path Length  
Density
Wavenumber (T dependence)
Fig.3_1 – CO2_CO2 experiment=
Fig.3_2 – CO2_N2 experiment=
Fig.3_3 – CO2_Ar experiment=
Fig.3_4 – CO2_D2experiment=
Fig.3_5 – CO2_H2 experiment=
Fig.3_6 – CO2_He experiment
Fig.3_7 –calculation, n=24
Fig.3_8 –calculation, n=14
Fig.3_9 –calculation, n=8
Fig.3_10 –calculation, n=5
Figure 3. Absorption coefficient. CO₂+He. Experiment. Зависимость коэффициентов поглощения от частоты в области крыла полосы ν3 СО2. Точки – эксперимент, кривые – расчет по формуле (9).
Frequency dependence of absorption coefficients in the region of the wing of the ν3 СО2 band. Points - experiment, curves - calculation by formula (9).
Commentary Additional description
Substance CO2 + He Method type Experimental
Temperature Method, Model, Approximation  
Pressure (total) Numerical array origin Digitized
Pressure (partial) Numerical array type Primary
Path Length  
Density
Wavenumber (T dependence)
Fig.3_1 – CO2_CO2 experiment=
Fig.3_2 – CO2_N2 experiment=
Fig.3_3 – CO2_Ar experiment=
Fig.3_4 – CO2_D2experiment=
Fig.3_5 – CO2_H2 experiment=
Fig.3_6 – CO2_He experiment
Fig.3_7 –calculation, n=24
Fig.3_8 –calculation, n=14
Fig.3_9 –calculation, n=8
Fig.3_10 –calculation, n=5
Figure 3. Absorption coefficient. CO₂+N₂. Experiment. Зависимость коэффициентов поглощения от частоты в области крыла полосы ν3 СО2. Точки – эксперимент, кривые – расчет по формуле (9).
Frequency dependence of absorption coefficients in the region of the wing of the ν3 СО2 band. Points - experiment, curves - calculation by formula (9).
Commentary Additional description
Substance CO2 + N2 Method type Experimental
Temperature Method, Model, Approximation  
Pressure (total) Numerical array origin Digitized
Pressure (partial) Numerical array type Primary
Path Length  
Density
Wavenumber (T dependence)
Fig.3_1 – CO2_CO2 experiment=
Fig.3_2 – CO2_N2 experiment=
Fig.3_3 – CO2_Ar experiment
Fig.3_4 – CO2_D2experiment
Fig.3_5 – CO2_H2 experiment
Fig.3_6 – CO2_He experiment
Fig.3_7 –calculation, n=24
Fig.3_8 –calculation, n=14
Fig.3_9 –calculation, n=8
Fig.3_10 –calculation, n=5
Figure 3. Correcting factor. CO₂. Calculation. n=14. Зависимость функции k(n) в области крыла полосы ν3 СО2. Точки – эксперимент, кривые – расчет по модели  интерференции линий. n – число интерферирующих линий. (n=24)
Dependence of the function k(n) in the wing region of the ν3 СО2 band. Points - experiment, curves - calculation by the line interference model. n is the number of interfering lines. (n=24)
Commentary Additional description
Substance CO2 Method type Theoretical
Temperature Method, Model, Approximation  
Pressure (total) Numerical array origin Digitized
Pressure (partial) Numerical array type Primary
Path Length  
Density
Wavenumber (T dependence)

Fig.3_7 –calculation, n=24
Fig.3_8 –calculation, n=14
Fig.3_9 –calculation, n=8
Fig.3_10 –calculation, n=5
Figure 3. Correcting factor. CO₂. Calculation. n=24. Зависимость функции k(n) в области крыла полосы ν3 СО2. Точки – эксперимент, кривые – расчет по модели  интерференции линий. n – число интерферирующих линий. (n=24)
Dependence of the function k(n) in the wing region of the ν3 СО2 band. Points - experiment, curves - calculation by the line interference model. n is the number of interfering lines. (n=24)
Commentary Additional description
Substance CO2 Method type Theoretical
Temperature Method, Model, Approximation  
Pressure (total) Numerical array origin Digitized
Pressure (partial) Numerical array type Primary
Path Length  
Density
Wavenumber (T dependence)

Fig.3_7 –calculation, n=24
Fig.3_8 –calculation, n=14
Fig.3_9 –calculation, n=8
Fig.3_10 –calculation, n=5
Figure 3. Correcting factor. CO₂. Calculation. n=5. Зависимость функции k(n) в области крыла полосы ν3 СО2. Точки – эксперимент, кривые – расчет по модели  интерференции линий. n – число интерферирующих линий. (n=5)
Dependence of the function k(n) in the wing region of the ν3 СО2 band. Points - experiment, curves - calculation by the line interference model. n is the number of interfering lines. (n=5)
Commentary Additional description
Substance CO2 Method type Theoretical
Temperature Method, Model, Approximation  
Pressure (total) Numerical array origin Digitized
Pressure (partial) Numerical array type Primary
Path Length  
Density
Wavenumber (T dependence)

Figure 3. Correcting factor. CO₂. Calculation. n=8. Зависимость функции k(n) в области крыла полосы ν3 СО2. Точки – эксперимент, кривые – расчет по модели  интерференции линий. n – число интерферирующих линий. (n=8)
Dependence of the function k(n) in the wing region of the ν3 СО2 band. Points - experiment, curves - calculation by the line interference model. n is the number of interfering lines. (n=8)
Commentary Additional description
Substance CO2 Method type Theoretical
Temperature Method, Model, Approximation  
Pressure (total) Numerical array origin Digitized
Pressure (partial) Numerical array type Primary
Path Length  
Density
Wavenumber (T dependence)

Fig.3_7 –calculation, n=24
Fig.3_8 –calculation, n=14
Fig.3_9 –calculation, n=8
Fig.3_10 –calculation, n=5
Primitive or composite plot search using article list
Select primitive plot Select composite plot
List of composite figures


INTAS grants 00-189, 03-51-3394, RFBR grants 02-07-90139, 05-07-90196, 08-07-00318
>