Молекулярная спектроскопия Молекулярная спектроскопия
Guest | Мои задания
 Rus | Eng   
Словарь  |  Справка
Просмотр составных рисунков

Просмотр составных рисунков, содержащих спектральные и иные функции молекул и слабосвязанных молекулярных комплексов

строк от
Всего строк 151

Год Подпись к графику Оригинальное изображение Количество графиков в составном рисунке Размер составного рисунка
1951

Figure 7a. Atmospheric transmission, 1 to 5.5 μ ; visual transmission (0.61 μ)  60% per sea mile; water content 17 mm.
Figure 7b. Atmospheric transmission, 7.5 to 14 μ; visual transmission (0.61 μ) 60% per sea mile; water content 17 mm.

1 x 2 800 x 1080
1962

Figure 2. The frequency dependence of the absorption coefficient α for  oxygen (curve A) and nitrogen (curve B).

1 x 2 960 x 1080
1968
Burch D.E.,
Absorption of infrared radiant energy by CO2 and H2O. III. Absorption by H2O between 0.5-36 cm-1 (278-2 cm).,
Journal of Optical Society of America, 1968, Volume 58, no. 10, Pages 1383-1394,
DOI: https://doi.org/10.1364/JOSA.58.001383.

Figure 6. Comparison of observed and calculated transmittances in the 18-36 cm-1 region for representative samples of H2O and H2O+N2. The observed values are represented by data points.  Calculated values of Tonic (v) with the instrumental response  function taken into account are represented by the solid lines, and calculated true transmittance T'(v) by the short-dashed lines, D and F. The long-dashed curves, A, E, and H represent TnIc (v)  with the following modifications to the parameters: Panel I,  Curve A, the contribution by the continuum was not included. Panel II, Curve E, the absorption coefficient was increased by 10% at all wavenumbers. Panel IV, Curve H, the self-broadening factor  Be for the continuum was assumed to be 5 instead of 13. The sample parameters are

Sample u p P
No. ( g/cm2) (atm) (atm)
1 0.105 0.0117 0.95
2 0.205 0.0116 0.95
3 0.200 0.0075 0.133
4 0.587 0.0226 0.0226
1 x 4 800 x 1080
1969

Figure 7. Boltmann-weighted Lorentzian curves fitted to the 2 components of the (1-0) 1Δg3Σg-- band at 87° and 300°K. The dashed curves are calculated for the individual components and the solid curve is the sum of these. The curve with dots gives the experimental data.

1 x 2 960 x 1080
1969

Figure 1. Spectra of the (0-0) band of the 1Δg + 1Δ3Σg-+3Σg- simultaneous transition. The pathlength is 168 m. The slitwidth is 1 cm-1. The oxygen desnity is 2.1 amagats at both temperatures. The tick mark indicates the band origin calculated from free-molecule spectroscopic constants.

1 x 2 960 x 1080
1969

Figure 2. Spectra of the (1-0) band of the 1Δg + 1Δ3Σg-+3Σg-- a simultaneous path length tranSItion. of 122 m The and a upper slitwidth spectrum of about was 1.2 recorded cm-1. with  The  lower spectrum was recorded with a path length of 168 m and a  slitwldth of about 2.5 cm-1. The oxygen density was 2.1 amagats at both temperatures. The tick mark indicates the band origin calculated from the spectroscopic constants of the free molecule.

1 x 2 960 x 540
1969
Москаленко Н.И., Мирумянц С.О.,
О влиянии температуры на поглощение ИК радиации парами Н2О и СО2,
Известия РАН. Серия Физика атмосферы и океана, 1969, Т. 5, № 12, Страницы 1292-1299.

Figure 1. Влияние температуры на спектральное пропускание паров Н2О (Р0=2.5 атм, w=4*10-3 ос см): а – полоса 1.37 мкм, б – полоса 1.87 мкм; 1 – Т=-30оС, 2 – Т=30оС, 3 – Т=120оС

1 x 2 800 x 1280
1971
L. Mannik, J. C. Stryland, H. L. Welsh,
An Infrared Spectrum of CO2 Dimers in the "Locked" Configuration,
Canadian Journal of Physics, 1971, Volume 49, Issue 23, Pages 3056-3057,
DOI: 10.1139/p71-364.

Figure 1. The (v1, 2v2) infrared  band of CO2. (a) Ob- served   spectrum (I = 56 m, ρ = 0.92 amagat, T = 1920K). (b) Profile with the (v1, 2v2) band of C16O18O removed. (c) Calculated pressure-induced   profile for free-free collisions. (d) (= (b) - (c))  Spectrum ascribed to the (CO2)2 dimer. (e) The v1d band with  assignments of the maxima.

1 x 2 640 x 1080
1972
A. R. W. McKellar, Nathan H. Rich, H. L. Welsh,
Collision-Induced Vibrational and Electronic Spectra of Gaseous Oxygen at Low Temperatures,
Canadian Journal of Physics, 1972, Volume 50, Issue 1, Pages 1-9,
DOI: 10.1139/p72-001.

Figure. 3. The 1.06 and 1.26 μ bands of O2 at 90 and 112 K. The densities were 2.91 and 4.98 amagat, respectively, and the absorption path was 137 m.

1 x 2 640 x 960
1972
A. R. W. McKellar, Nathan H. Rich, H. L. Welsh,
Collision-Induced Vibrational and Electronic Spectra of Gaseous Oxygen at Low Temperatures,
Canadian Journal of Physics, 1972, Volume 50, Issue 1, Pages 1-9,
DOI: 10.1139/p72-001.

Figure 4. The 5770 and 6290 A bands of O2 at 90, 113, and 295 K. The densities were 2.66, 5.61, and 4.42 amagat, respectively, and the absorption path was 137 m at the low temperatures and 165 m at room temperature.

1 x 2 640 x 960
1972
Юхневич Г.В., Ветров А.А.,
Димерные комплексы в парах воды плотностью 0.1 г/см3,
Доклады Академии Наук, 1972, Т. 204, № 1, Страницы 154-157.

Figure 1. Кривые прозрачности паров воды при температуре 350оС.
         Давление,     Толщина,      Плотность,
               бар                 мм                      г/см3 
  а            158               0.20                    0.1
  б            76                 0.62                    0.032
  в            27.5              2.0                       0.01
  г             8.7                6.2                     0.0032
  д            2.8                20.0                    0.001

1 x 5 640 x 700
1973
Стырикович М.А., Юхневич Г.В., Ветров А.А., Вигасин А.А.,
Молекулярный состав паров воды высокой плотности и некоторые их термодинамические свойства,
Доклады Академии Наук, 1973, Т. 210, № 2, Страницы 321-323.

Figure 1. Спектры оптической плотности паров воды при температуре 360оС и различных давлениях: а – 65; б – 114; в – 143; г – 177 ата; 1 – наблюдаемый суммарный спектр, 2 – спектр мономерной части молекул, 3 – спектр ассоциированных молекул.

1 x 4 800 x 1920
1974
Dagg I.R., Reesor. G.E., and Urbaniak J. ,
Collision Induced Microwave Absorption in CO2, and CO2-Ar, CO2-CH4 Mixtures in the 2.3 cm-1 Region,
Canadian Journal of Physics, 1974, Volume 52, Issue 11, Pages 973,
DOI: 10.1139/p74-133.

 Figure 6.  A plot of the absorption coefficient a(v)  divided by v2 vs. v, showing a solid line through the  experimental results for a2(v)/v2 of Ho et al. (1971),  Frenkel and Woods (1966). and the present results, and a dotted line through the results of Birnbaum et al. (1971) and the present result for a3(v)/v2.

2 x 1 1280 x 480
1975
Vetrov A.A., Yukhnevich G.V,
Some optical properties of high-density water vapors,
Optics and Spectroscopy, 1975, Т. 39, № 3, Страницы 273-275.

Спектры поглощения паров воды различной плотности при температуре 350оС.  а – 0.0032, б – 0.01, в – 0.032, г – 0.1 г/см3.

2 x 2 1600 x 1080
1976
Поберовский А.В.,
Исследование полос поглощения водяного пара (1.38 и 1.87 мкм) при повышенных давлениях и температурах,
Проблемы физики атмосферы. Вып. 13,
Ленинград, Изд-во ЛГУ, 1976, Страницы 81-87.

Figure 1.  Спектры  пропускания водяного пара в области 1.35 (а) и 1.87 (б) мкм:
а : 1 – w=0.084 г/см2, РН2О=4.2 атм, РН2О-N2=120 атм,
      2 - w=0.0083 г/см2, РН2О=41.44 атм,
      3 - w=0.0098 г/см2, РН2О=4.954 атм,
      пунктир – спектр димера
б : 2 - w=0.0086 г/см2, РН2О=4.355 атм,
      1 - w=0.0083 г/см2, РН2О=41.44 атм,
     3 - w=0.0084 г/см2, РН2О=4.2 атм, РН2О-N2=120 атм.

1 x 6 640 x 2880
1979
Zavody A.M., Emery R.J., Gebbie H.A.,
Temperature dependence of atmospheric absorption in the wavelength range 8-14 um,
Nature, 1979, Volume 277, Pages 462-463.

Figure 1. Curves a-a’ and b-b’ show observed anomalous absorption values for mean temperatures of 281 and 290 K respectively, reduced to a water vapour density of 4.8 g m-3. The estimated error is ±0.02 dB km-1. Curves A-A’ and B-B’ are the corresponding temperature dependence values expressed as the exponent B in equation (1), with a maximum estimated error ±0.04 eV per molecule (at 12.6 μm wavelength). Curve l-l’ shows laboratory values from Ref.3 scaled to 290 K and density 4.8 g m-3, and L-L’ is the corresponding laboratory temperature dependence. Curve m-m’ shows a monomer model spectrum from the data in Table 1, for 290 K and density 4.8 g m-3. The values given by P and Q are taken from Ref.1, and apply to the temperature range 258 to 299 K.
b(255, 0, 255);"

[1]. Coffey, M.T., Quat. Jour. Res. Met. Soc, 103, 685-692 (177)
[3] Burch D.E., Proc. Am. Met. Soc, Conference on Atmospheric Radiation, Fort Collins, Colorado, 7-9 August (1972)  

1 x 2 800 x 960
1980
Simpson O. A. , Bohlander R. A. ,Gallagher J. J. , Perkowitz S.,
Measurements of far-infrared water vapor absorption between lines with an optically pumped laser,
Journal of Physical Chemistry, A, 1980, Volume 84, no. 14, Pages 1753-1755,
DOI: 10.1021/j100451a001.

Figure 1. Theoretical water vapor absorption (water vapor density 18 g/m3, temperature 296°K) based on the Gross line-shape formula with laser frequencies in the gaps shown by arrows.

1 x 2 800 x 1080
1980
Телегин Г.В., Фомин В.В.,
О вкладе селективного и континуального поглощения в микроокнах спектра водяного пара в области 8-12 мкм,
Журнал прикладной спектроскопии, 1980, Т. 33, Выпуск 3, Страницы 513-516.

Figure 1. Сравнение экспериментов [6] (а, Н2О-Н2О) и [1] (с учетом [6,7]) (б, Н2О-N2) и расчетов. Аппроксимация экспериментов (1), расчеты по обобщенному контуру (2), по формуле Лоренца (3) и полной формуле Лоренца (4).

[1]
Bignell K.J., Saiedy F., Sheppard P.A. On the atmospheric infrared continuum , J. Opt. Soc.America 53, No.4, 466-479 (1963)
[6] Burch D.E. Investigation of the absorption of infrared radiation by atmospheric gases.  Semi-annual Technical report. Air Force Cambridge Research Lab., Publ. U-4784 (1970)
[7] K. J. Bignell, The water-vapour infra-red continuum, Quarterly Journal of the Royal Meteorological Society, Volume 96 Issue 409, Pages 390 - 403 1970 10.1002/qj.49709640904

 

2 x 1 1380 x 480
1981
Burch D.E.,
Continuum absorption by atmospheric H2O,
SPIE Proc. Atmospheric Transmission, V.277, Editor(s) Robert W. Fan,
SPIE - The international society for optical engineering, 1981, Pages 28-39,
DOI: 10.1117/12.931899.

Figure 13. Comparison of the spectral curves from 0 to 3100 cm-1 of the empirical continuum for self broadening (C), the absorption coefficient of liquid water (L), and the average intensities of the H2O vapor lines (V). Note scale change at 50 cm-1.

2 x 1 1600 x 640
1982
Burch D.E.,
Continuum absorption by atmospheric H2O,
Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB,
Massachusets, 1982, Pages 46.

Figure 13. Comparison of the spectral curves from 0 to 3100 cm-1 of the empirical continuum for self broadening (C), the absorption coefficient of liquid water (L), and the average intensities of the H2O vapor lines (V). Note scale change at 50 cm-1.

2 x 1 1600 x 640
1982
Gebbie H.A.,
Resonant absorption by water polymers in the atmosphere,
Nature, 1982, Volume 296, Pages 422-424.

Figure 1.  Predicted spectra for fogs comprising molecular absorption and particle loss computed from standard models; corresponding to visibilities of 50 (dotted line), 10 (dashed line) and 150 (solid line) m. Spectra observed in the atmosphere corresponding to the models. The standard deviation in the measured spectra is 3 dB km-1. In such fogs the liquid drops are all small compared with the wavelengths and show Rayleigh region behavior in which attenuation varies monotonically. Nether this component nor equilibrium dimers can accounr for the observed additional structure between monomer lines.

1 x 2 800 x 960
1982
M. Tanaka, T. Nakazawa and M. Fukabori,
Absorptions of the ρστ, 0.8 μm and a bands of the water vapor,
Journal of Quantitative Spectroscopy and Radiative Transfer, 1982, Volume 28, Issue 6, Pages 463-470,
DOI: 10.1016/0022-4073(82)90012-7.

Figure 1.  Predicted spectra for fogs comprising molecular absorption and particle loss computed from standard models; corresponding to visibilities of 50(…), 10(---) and 150(___) m. Spectra observed in the atmosphere corresponding to the models. The standard deviation in the measured spectra is 3 dB km-1. In such fogs the liquid drops are all small compared with the wavelengths and show Rayleigh region behavior in which attenuation varies monotonically. Nether this component nor equilibrium dimers can accounr for the observed additional structure between monomer lines.

1 x 2 640 x 960
1984
N. I. Furashov, V. Yu. Katkov and V. Ya. Ryadov,
On the anomalies in submillimeter absorption spectrum of atmospheric water vapor,
International Journal of Infrared and Millimeter Waves, 1984, Volume 5, Issue 7, Pages 971-984,
DOI: 10.1007/BF01009586.

Figure 1. Results of our laboratory measurements in comparison with laboratory investigations of (30) and theoretical data (ρ=19 g.m-3, T=25.5oC, P =730 Torr). Our total absorption (A) and excess one (B) are shown by circles. Theoretical values for water vapor monomers (chain-dot curve), excess absorption spectrum (30) (solid curve) and theoretical dimer absorption (7) (dotted curve) are shown as well.

[7]. A.A.Viktorova, S.A.Zhevakin,DAN USSR, v.194, 540 (1970).
[30].  R.J. Emery, P .Moffat, R.A. Bohlander, H. A. Gebbie, J. Atm.Terr.Phys. v.7,587 (1975).

1 x 2 800 x 960
1984
N. I. Furashov, V. Yu. Katkov and V. Ya. Ryadov,
On the anomalies in submillimeter absorption spectrum of atmospheric water vapor,
International Journal of Infrared and Millimeter Waves, 1984, Volume 5, Issue 7, Pages 971-984,
DOI: 10.1007/BF01009586.

Figure 2. Our results of field measurements as compared with field investigation (30) and the theory (r =8.5 g.m-3, T=8.5°C, P= 727 Torr). Our total absorption (A) and excess one (B) are shown by circles. All the data are shown as in Figure 1. (A) and excess one (B) are shown by circles. Theoretical values for water vapor monomers (chain-dot curve),excess absorption spectrum (30) (solid curve) and theoretical dimer absorption (7) (dotted curve) are shown as well.

[7]. A.A. Viktorova, S.A. Zhevakin,
Поглощение микрорадиоволн димерами водяного пара атмосферы, DAN USSR, v.194, 540 (1970).
[30]. R.J. Emery, P. Moffat, R.A. Bohlander, H.A. Gebbie, Measurements of anomalous atmospheric absorption in the wavenumber range 4-15 per cm, J. Atm. Terr. Phys. v.7,587 (1975).

1 x 2 800 x 960
1985

Figure 3. A plot of A(v)/ρ2 versus the frequency (cm-1) measured using an FIR interferometer and indicated by the solid curve. The results are displayed for the four different temperatures used: (a) 212 K, (b) 179 K, (c) 149 K, (d) 126 K. In each case the laser measurements at 84.2 and 15.1 cm-1 are shown. Also shown are the theoretical line shapes generated using Mori theory (dashed line) as discussed in the text. In (d) the results of Buontempo et al. (10) are given for comparison.

2 x 2 1300 x 840
1985
Liebe H.J.,
An updated model for millimetre wave propagation in moist air,
Radio Science, 1985, Volume 20, no. 5, Pages 1069-1089,
DOI: 10.1029/RS020i005p01069.

Figure 8. Water vapor attenuation rates α(v) across atmospheric window range W4 at two temperatures, 5o and -10o C; pluses, measured data [Fedoseev and Koukin, 1984]; lines, MRM.

2 x 1 1360 x 480
1985
P. Codastefano, P. Dore and L. Nencini,
Far Infrared Absorption Spectra in Gaseous Methane from 138° to 296°K,
Phenomena Induced by Intermolecular Interactions, NATO ASI series 127, Editor(s) G. Birnbaum,
Springer US, 1985, Pages 119.

Figure 1. Absorption coefficients A(V) at 195° (upper) and 296°K (lower). ooooo present results;---- from Birnbaum (1975). A(v) are plotted in arbitrary units. In our data the maximum value is 9.24 10-6 cm-1 amagat-2 at 296°K and 1.22 10-5 cm-1 amagat-2 at 195°K.

Birnbaum, G. Far infrared collision‐induced spectrum in gaseous methane. I. Band shape and temperature dependence  J. Chem. Phys., 62:59, 1975, https://doi.org/10.1063/1.430239

1 x 2 800 x 1280
1986

Figure.1. Comparison of measured (Ref.5) (dots) and theoretical (curves) roto-translational spectra of H2-CH4 pairs at five temperatures from 140 to 296 K and frequency range from 150 to 850 cm-1.

P. Codastefano, P. Dore, L. Nencini, Temperature dependence of the far-infrared absorption spectrum of gaseous methane, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 35, Issue 4, April 1986, Pages 255-263, https://doi.org/10.1016/0022-4073(86)90079-8

1 x 5 800 x 2400
1986
Borysow, Aleksandra; Frommhold, Lothar,
Collision-induced rototranslational absorption spectra of N2-N2 pairs for temperatures from 50 to 300 K,
The Astrophysical Journal, 1986, Volume 311, Pages 1043-1057,
DOI: 10.1086/164841.

Figure 2. Far-infrared absorption spectrum of N2-N2 at (a) 126, 149, and 179 K and (b) 228.3 and 300 K. Open circles, experimental data at (a) 124K, and (b) 300K of Buentempo et.al. (1975).  Filled circles, squaries and triangles denote new results (Stone et al. 1984; Dagg et al. 1985). Lines, fitted spectrum, with the Ling and Rigby isotropic  potential  (see Appendix) and the dipole parameters given in Table 3. In (a), the scale is shifted by a factor of 2 at each temperature.

2 x 1 1300 x 800
1986

Figure 4. Plots of the absorption coefficient per product density (amix) as a  function of  the frequency v at the four temperatures (a) 212°, (b) 179°, (c) 149°, and (d) 126°K. The experimental  results are shown as the solid curves in the figures, and our theoretically derived line shapes are represented as the dotted curves. In (d), the theoretical  contributions due to  the various  induction  mechanisms are labelled Q, 0, and H for quadrupole, octopole,  and hexadecapole  induction,  respectively.

2 x 2 1600 x 960
1986

Figure 3. Absorption coefficient AHM(v ) at 296° and 195°K. The vertical bars indicate the typical uncertainties in the experimental points. The broken line is the CH4+H2 absorption coefficient as obtained in previous measurements

1 x 2 800 x 1280
1987

Figure 1. Absorption coefficients α(ω) of CH4-CH4 fitted (solid lines) at different temperatures. Dots: experimental data at temperatures from 140° and 295°K from (20); and at 126°K from (22). J-dependent multipole moments according to Eqs. (9) and (10) are assumed (Table III). For all temperatures above 126°K the displayed spectra are shifted up by one decade; the maximum of the absorption coefficient at each temperature is near 10-5 cm-1 amagat-2 at all temperatures. As an example, the contributions due to the octopole (dashed line) and hexadecapole (dotted tine) induction are shown for one temperature.
20. P. Codastefano, P. Dore, and L. Nencini, J . Quant. Spectrosc. Radiat. Transfer 35, 255-263 (1986).
22. I. R. Dagg, A. Anderson, S. Yan, W. Smith, C. G. Joslin, and L. A. A. Read, Canad. J. Phys.1986, in press.

2 x 4 1380 x 1920
1987
Borysow, Aleksandra; Frommhold, Lothar,
Collision-induced rototranslational absorption spectra of CH4-CH4 pairs at temperatures from 50 to 300 K,
The Astrophysical Journal, 1987, Volume 318, Pages 940-943,
DOI: 10.1086/165426.

Figure 1. CIA spectra of CH4-CH4 at the temperatures of 50°, 110°, and 300°K, computed from a quantum mechanical formalism described elsewhere (Borysow and Frommhold 1987). The dimer bands are convoluted with a triangular slit function of 4.3 cm-1 resolution. The octopole-induced (dashed curve) and hexadecapole-induced (dot-dashed curve) contributions are shown, together with the total (solid curve).

1 x 3 800 x 1440
1987

Figure 1. Pure N2 absorption spectrum at 297 and 149 K: ... , experimental data from ref. 7; ----. best fit; - - -, hexadecapolar component. Vertical bars indicate typical uncertainties for the experimental points. At 297K, the best-fit parameters are SΦnn = 1690 K-Å6, δ0nn = 19.6 cm-1, S0nn = 49 K-A", and δΦnn = 34.5 cm-1.  At 149 K, s:, = 1915 K-Å6, δ0nn = 15 cm-1: SΦnn = 47 K-Å6, and δΦnn = 23.5 cm-1.

2 x 1 1360 x 800
1987

Figure 2. Pure N2 absorption spectra at 140 and 93 K: ... , experimental data from ref. 9; ----, computed spectra multiplied by a normalizing factor F (F = 0.93 at 140 K and 1.12 at 93 K); ---, computed 90-K spectrum from ref. 5 (multiplied by a factor of 2 because of a different definition of the absorption coefficient).

2 x 1 1360 x 800
1987

Figure 1. Observed and calculated spectra of the CO2 trimer in the region of the 2ν02 + ν3 combination band of the monomer indicated by the negative-going R (0) line. Observed spectra for 3% CO2:He mixture at 2, 3, and 5 atm driving pressure. Asterisks indicate transitions attributed to the CO2 dimer. Calculated transitions are simulated with Gaussian profiles of 20 MHz FWHM and an effective rotational temperature of 1.3 K

1 x 4 800 x 960
1987
Hinderling J., Sigrist M.W., Kneubuhl F.K.,
Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14-μm atmospheric window,
Infrared Physics & Technology, 1987, Volume 27, no. 2, Pages 63-120,
DOI: 10.1016/0020-0891(87)90013-3.

Figure 19. Measured temperature dependence of the pressure quadratic coefficients Cs of the continuum absorption at the (a) 10P(20), (b) 10P(24) and (c) 10P(30) CO2-laser emissions. Dashed lines correspond to least square fits based on equation (25). Solid lines correspond to best fits on the basis of equation (29).Dimer model: Suck S.H., Kassner J.L., Jr., Jamaguchi J. Water clusters interpretation of IR absorption spectra in the 8-14 μm wavelength region Appl.Opt. 18, No.15, 2609-2617 (1979).

1 x 3 800 x 1440
1987
Hinderling J., Sigrist M.W., Kneubuhl F.K.,
Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14-μm atmospheric window,
Infrared Physics & Technology, 1987, Volume 27, no. 2, Pages 63-120,
DOI: 10.1016/0020-0891(87)90013-3.

Figure 20. Measured temperature dependence of the pressure quadratic coefficients Cs of the continuum absorption at the (a) 10P(20), (b) 10P(24), (c) 10P(30) and (d) 10P(38) CO2-laser emissions. Solid lines represent best fits on the basis of equation (29).

2 x 2 1360 x 960
1987
Hinderling J., Sigrist M.W., Kneubuhl F.K.,
Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14-μm atmospheric window,
Infrared Physics & Technology, 1987, Volume 27, no. 2, Pages 63-120,
DOI: 10.1016/0020-0891(87)90013-3.

Figure 24. Temperature dependence of the pressure quadratic coefficients Cs of the continuum absorption for the (a) 10P(20) and (b) 10P(24) CO2-laser emissions. Solid lines represent best fits on the basis of equations (26) and (29).

1 x 2 800 x 960
1987

Figure 3. A comparison between a calculated and experimental carbon dioxide dimer spectrum. The calculated spectrum was obtained using the rotational constants given in Table II. Although most of the features in the spectrum are properly accounted for there are some extra transitions in the observed spectrum, most likely associated with the parallel band. A very accurate fit to the spectrum was not possible due to what appears to be a staggering of the K band origins due to tunneling.

1 x 2 1500 x 800
1988

Figure 2. The collision-induced spectrum of pure N2 + Ar at 126, 149, 179, 212, and 298°K. The measurements are from Dagget al. (1986).  Points, FTIR data: Δ. microwave data at 15.1 cm-1; O, laser data at 84.2 cm-1). The solid lines were calculated with the semi-empirical model described in the text. The spectra for different temperatures are vertically offset.
Dagg, I.R., Anderson, A., Yan, S., Smith, W. and Read, L.A.A., Collision-induced absorption in nitrogen at low temperatures. Canadian journal of physics, 63(5), pp.625-631. 1985, DOI: 10.1139/p86-002.

1 x 4 800 x 1920
1988

Figure 5. The collision-induced spectrum of N2 + H2 mixture at 91, 141, 165, 195 and 298°K. The measurements are from Dore et al. (1986).
Dore, P., A. Borysow,  and L. Frommhold,  Roto-translational far-infrared absorption spectra of H2-N2 pairs, J. Chem. Phys. 84, 5211 (1986);

1 x 5 800 x 2400
1988

Figure 3. The collision-induced spectrum of pure CH4 at 140°, 163°, 195°, and 295°K. The measurements are from Codastefano et al. (1985, 1986).

Codastefano, P., P. Dore, and L. Nencini 1985. Far-infrared absorption spectra in gaseous methane from 138 to 296 K. In Phenomena Induced by Intermolecular Interactions (G. Birnbaum, Ed.), pp. 119-128. Plenum, New York.
Codastefano, P., P. Dore, and L. Nencini. 1986. Temperature dependence of the far-infrared absorption spectrum of gaseous methane. J. Quant. Spectrosc. Radiat. Transfer 35, 255-263.

1 x 4 800 x 1980
1988

Figure 4. The collision-induced spectrum of N2 + CH4 mixture at 126°, 149°, 179°, and 212°K. The measurements are from Dagg et al. (1986).

Dagg, I. R., A. Anderson, S. Yan, W. Smith, G. G. Joslin, and L. A. A. Read, 1986. Collision-induced absorption in gaseous mixtures of nitrogen and methane. Canad. J. Phys. 64, 1467-1474.

1 x 4 800 x 1920
1988

Figure 1. Density normalized absorption coefficients α(ω)/n1n2 of He-CH4 at three temperatures. Dots: Experimental data at 150°, 293°, and 353°K by Afanas’ev et al. (7). Solid line: Calculated spectra determined by fitting the range and amplitude of only the isotropic (A = 0) overlap contribution to the dipole induction. For all the temperatures above 150°K the displayed spectra are shitkl up by one decade; the maximum of the absorption coefficient at each temperature is near 10-6 cm-1/amagat2.
7. A. D. Afana'sev, M. 0. Bulanin, and M. V. Tonkov, Sov. Technol. Phys. Lett. 6, 1444-1446 (1980). [in Russian]

1 x 3 800 x 1440
1989

Figure 1. Methane  absorption coefficient at 296K. A. Comparison between experimental and computed spectrum. The computed spectrum is given by the sum of l= 3 (a), l = 4 (b) and double transition (c) components. B. The two components (3, 3) and (3, 4) of the double transition spectrum are shown. The parameters used in the computations are reported in the table (case a).

2 x 1 1600 x 480
1989

 Figure 3. Comparison of calculated and observed spectra for the 2.0 μm (a) and 1.6 μm (b) CO2 bands. - Measured spectra; o - present work profiles; --- sub-Lorentzian profile.

1 x 2 640 x 960
1990

Figure 1. Observed spectra of the enhancement by N2 of the collision-induced fundamental band of H2 at 77°K, recorded with a total gas density of about 1.3 amagats and a path length of 154 m. The upper curve (a) is for para-H2 and the lower curve (b) for normal H2. The broad underlying absorption is due to collision-induced absorption in H2-N2 collision pairs. Of interest here is the sharper structure, concentrated near the peak of each collision-induced line, which is due to bound H2-N2 complexes.

2 x 1 1360 x 800
1990
Thomas M.E.,
Infrared and millimetre-wavelength absorption in the atmospheric windows by water vapour and nitrogen: measurements and models,
Ifrared Physics, 1990, Volume 30, Pages 161-174,
DOI: 10.1016/0020-0891(90)90027-S.

Figure 8. The 4-μm continuum region at T = 296 K. (a) Cs vs wavenumber [27] and (b) the absorption coefficient vs wavelength.[37,38].

[27] D. E. Burch and R. L. Alt, AFGL-TR-84-0128, Ford Aerospace and Communications Corporation, Aeronutronic Division (1984).
[37] K. O. White, W. K. Watkins, C. W. Bruce, R. E. Meredith and F. G. Smith, Appl. Opr. 17, 2711 (1978)
[38] F. S. Mills. Dissertation. The Ohio State University (1975).

1 x 2 640 x 960
1993
Borysow, Aleksandra; Tang, Chunmei,
Far Infrared CIA Spectra of N2-CH4 Pairs for Modeling of Titan's Atmosphere,
Icarus, 1993, Volume 105, Issue 1, Pages 175-183,
DOI: 10.1006/icar.1993.1117.

Figure 2. Rototranslational collision-induced spectra of N2-CH4 pairs. Markers denote experimental data by (Dagg et al. 1986) at temperatures of 126°, 149°, 179°, and 212°K. Solid lines show our theoretical results based on fitted parameters μ obtained at this work.
I. R. Dagg, , A. Anderson, , S. Yan, , W. Smith, , C. G. Joslin, and , L. A. A. Read. Collision-induced absorption in gaseous mixtures of nitrogen and methane. Canadian Journal of Physics, 1986, 64(11): 1467-1474, https://doi.org/10.1139/p86-260

1 x 4 800 x 1920
1993
Borysow, Aleksandra; Tang, Chunmei,
Far Infrared CIA Spectra of N2-CH4 Pairs for Modeling of Titan's Atmosphere,
Icarus, 1993, Volume 105, Issue 1, Pages 175-183,
DOI: 10.1006/icar.1993.1117.

Figure 3. Rototranslational collision-induced spectra of N2-CH4 pairs. Markers denote experimental data by (Birnbaum et al. 1993) at temperatures of 162°K, 195°K, and 297°K. Solid thick lines show our theoretical results, based on fitted parameters m obtained in this work. Separate dipolar contributions are marked with thin lines and denote induction by: dots, N2  Θ, dash-dot-dot, N2 Φ; dashes, CH4 Ω; dash-dot, CH4 Φ; dot-dash-dash, CH4 Q6 ; and long dashes, double transitions.
G. Birnbaum, A. Borysow, A. Buechele, Collision‐induced absorption in mixtures of symmetrical linear and tetrahedral molecules: Methane–nitrogen, J. Chem. Phys. 99, 3234 (1993); https://doi.org/10.1063/1.465132

1 x 3 800 x 1440
1993
Borysow, Aleksandra; Tang, Chunmei,
Far Infrared CIA Spectra of N2-CH4 Pairs for Modeling of Titan's Atmosphere,
Icarus, 1993, Volume 105, Issue 1, Pages 175-183,
DOI: 10.1006/icar.1993.1117.

Figure 4. Comparison of the theoretical estimations based on the current (solid line) and the previous (Courtin 1988) (dashed line) models. The absorption spectra are shown at temperatures of 70°, 120°, and 170°K and frequencies up to 600 cm-1.
Régis Courtin, Pressure-induced absorption coefficients for radiative transfer calculations in Titan's atmosphere, Icarus, Volume 75, Issue 2, August 1988, Pages 245-254, https://doi.org/10.1016/0019-1035(88)90004-8

1 x 3 800 x 1440
1993
J.M. Hartmann, M.Y. Perrin, Q. Ma and R.H. Tipping,
The infrared continuum of pure water vapor: calculations and high temperature measurements,
Journal of Quantitative Spectroscopy and Radiative Transfer, 1993, Volume 49, Issue 6, Pages 675-691,
DOI: 10.1016/0022-4073(93)90010-F.

Figure 4. Experimental pure H2O transmission spectra for 575 K.

2 x 1 1280 x 480
1993
J.M. Hartmann, M.Y. Perrin, Q. Ma and R.H. Tipping,
The infrared continuum of pure water vapor: calculations and high temperature measurements,
Journal of Quantitative Spectroscopy and Radiative Transfer, 1993, Volume 49, Issue 6, Pages 675-691,
DOI: 10.1016/0022-4073(93)90010-F.

Figure 12. Pure H2O transmissivities in the wing of the n2 band (2.5 cm-1 resolution): - experimental data; --- calculated from Eqs. (15) and (17) and Table 4. Fig. (12) 575 K and the densities: 10.5 Am; 21.3 Am; and 38.2 Am. Fig. (112) 775 K and the densities: 8.30 Am; 14.2 Am; and 25.6 Am.

1 x 2 1024 x 960
1995
M.J. Weida, J.M. Sperhac, D.J. Nesbitt.,
High-resolution infrared diode laser spectroscopy of (CO2)3: Vibrationally averaged structures, resonant dipole vibrational shifts, and tests of CO2–CO2 pair potentials,
The Journal of Chemical Physics, 1995, Volume 103, Issue 18,
DOI: 10.1063/1.470291.

Figure 10. Unidentified  Q-branch  like  absorptions  in  the  observed (CO2)2+(CO2)3 spectrum. The features labeled QA and QB clearly do not belong to the dimer or cyclic trimer. Moreover, they are within 0.4 cm-1 of the predicted vibrational origin of the trimer asymmetric top isomer from model potentials. Overlap of (CO2)3 transitions with the head of both QA and QB is coincidental (conditions: 1.8% CO2 in He,P0=1 bar)

1 x 2 960 x 1080
1996

Figure 4. Portion of noncyclic (CO2)3 isomer nI band spectrum. The observed spectrum corresponds to a c-type band of an asymmetric top, with a hybrid character of <0.10. The model spectrum (Gaussian width 575 MHz, 0.87 c type, 0.13 a type) correctly reproduces the observed features, including the strong Q branch at 2343.3 cm-1. The gaps in the observed spectrum are due to CO2 monomer transitions ~including hot band and 16O12C17O transitions! that have been excised for visual clarity. Conditions: 2% CO2 seeded in He at 0.8 bar, 20 passes of probe through expansion.

1 x 2 1200 x 480
1996

Figure 6. Portion of nIII band of the noncyclic (CO2)3 isomer. Some of the main P-branch transitions of the noncyclic trimer are labeled in the model spectrum, and indicated by arrows in the observed spectrum. Also note the strong Q branch marked with an asterisk in the observed spectrum. This corresponds to none of the predicted features, and probably belongs to a cluster larger than the trimer. Conditions: 0.6% CO2 in He, P0=2.1 bar, 2 passes. Model spectrum: Trot=6.5 K, linewidth is 50 MHz. Hybrid character: 0.78 a type, 0.22 c type.

1 x 4 800 x 960
1996

Figure 5. Self-broadened continuum coefficients from this research, Burch, CKD models, Ma and Tipping, and impact theory.

[5] R. H. Tipping and Q. Ma, Theory of the water vapor continuum and validations, Atmos. Res. 36, 69–94 (1995), and references therein.
[8] S. A. Clough, in The water vapor continuum and its role in remote sensing, in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series Optical Society of America, Washington, D.C., 1995, pp. 76–78.
[14] D. E. Burch, Continuum absorption by H2O, Ford Aerontronic Rep. AFGL-TR-81-0300, U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1982.

1 x 2 800 x 1280
1998
David A. Newnham, John Ballard,
Visible absorption cross sections and integrated absorption intensities of molecular oxygen (O2 and O4),
Journal of Geophysical Research, 1998, Volume 103, no. D22, Pages 28,801,
DOI: 10.1029/98JD02799.

Figure 10. Net binary absorption cross sections  of the O4 visible bands for 1000 hPa pure oxygen at (a) 223 K and (b) 283 K. Figures 210c and 310d show the cross sections corrected for the O2 -γ-band absorption in the 630.0 nm region for Figures 10a and 110b, respectively. Standard deviations of the cross sections are shown on an expanded scale below each of Figures 10a-310d.

2 x 2 1080 x 640
1998

Figure 5. (a) D2O cluster spectra as a function of source pressure. Scans are taken at 10, 15, 25, 35, and 45 p.s.i. absolute pressure. Scans are taken at 10, 15, 25, 35, and 45 p.s.i. absolute pressure. Note to two uppermost pressure scans are plotted with the same offset to highlight the ‘‘bulk ice’’ feature that appears for the highest source pressure. (b) D2O cluster spectra obtained with a constant source pressure ~35 psia! and increasing concentration of water in the carrier gas.

1 x 2 960 x 1680
1999
Y.I. Baranov, A.A. Vigasin,
Collision-Induced Absorption by CO2 in the Region of ν1, 2ν2,
Journal of Molecular Spectroscopy, 1999, Volume 193, Issue 2, Pages 319-325,
DOI: 10.1006/jmsp.1998.7743.

Figure 2. (a) CIA spectrum in the vicinity of lower member of the Fermi doublet. (b) Same as in Fig. 2a for the upper Fermi-coupled band.

1 x 2 640 x 960
2000

Figure 5. (A) Evolution in ν3 region of a CO2/Ar mixture (1/10 000) kept at 30 K during different time lapses (t).: (a) t=0; (b) t =10 min; (c) t = 20 min; (d) t = 30 min; (e) t = 45 min; (B) comparison of a spectrum of 13CO2/Ar sample (1/10 000) in the ν3 region recorded at  11 K after deposition at 20 K with a spectrum recorded at 11 K after annealing at 30 K. M: monomer; : band due to N2 impurity. D', D" dimer; P pair; X not assigned.

1 x 2 960 x 1080
2000
A.A. Vigasin,
Intensity and Bandshapes of Collision-Induced Absorption by CO2 in the Region of the Fermi Doublet,
Journal of Molecular Spectroscopy, 2000, Volume 200, Issue 1, Pages 89-95,
DOI: 10.1006/jmsp.1999.8022.

Figure 3. (b) Comparison of the calculated symmetric-top-like dimeric spectrum (solid line) with the experimental one (dots, see lower trace in Fig. 1) in the vicinity of the lower Fermi-coupled band. The dashed line shows the spectral profile which occurs provided rotational predissociation effect is neglected. Solid and dashed lines in this figure refer to the stick spectrum only and the sticks plus dash wings in the Fig. 3a, respectively. (c) Comparison of the calculated symmetric-top-like dimeric spectrum (solid line) with the experimental one (open circles, see lower trace in Fig. 1) in the vicinity of the upper Fermi coupled band.

1 x 2 640 x 960
2001
A.A Vigasin, F Huisken, A.I Pavlyuchko, L Ramonat, E.G Tarakanova,
Identification of the (CO2)2 Dimer Vibrations in the ν1, 2ν2 Region: Anharmonic Variational Calculations,
Journal of Molecular Spectroscopy, 2001, Volume 209, Issue 1, Pages 81–87,
DOI: 10.1006/jmsp.2001.8409.

Typical CARS spectra taken at high resolution in the regions of νlow and νup (14, 15, 23). Neat CO2 gas was expanded at a stagnation pressure of 1.5 bar through a ω = 90-μm-wide and l=1-mm-long slit nozzle. Both spectra were recorded at a relative distance of z/w = 4 from the nozzle exit.

14. A. A. Vigasin, A. A. Ilyukhin, L. Ramonat, V. V. Smirnov, O. M. Stelmakh, and F. Huisken, Khim. Fiz. 15, 88–95 (1996) [in Russian].
15. F. Huisken, L. Ramonat, J. Santos, V. V. Smirnov, O. M. Stelmakh, and A. A. Vigasin, J. Mol. Struct. 47, 410–411 (1997).
23. L. Ramonat, Ph.D. Thesis, University of Gottingen, 1997.

2 x 1 1280 x 480
2001
Tiedje, H.F., DeMille, S., MacArthur, L. and Brooks, R.L.,
Cavity ring-down spectroscopy of transient O2-O2 dimers ,
Canadian Journal of Physics, 2001, Volume 79, Issue 4, Pages 773-781,
DOI: 10.1139/p01-042, https://doi.org/10.1139/p01-042.

Figure 3. CRDS spectra of (O2)2 a(0; 0)← X(0; 0) (top) and a(0; 1)← X(0; 0) (bottom) at three higher densities.

1 x 2 960 x 1080
2001
Tiedje, H.F., DeMille, S., MacArthur, L. and Brooks, R.L.,
Cavity ring-down spectroscopy of transient O2-O2 dimers ,
Canadian Journal of Physics, 2001, Volume 79, Issue 4, Pages 773-781,
DOI: 10.1139/p01-042, https://doi.org/10.1139/p01-042.

Figure 3. Portion of observed (CO2)2+(CO2)3 infrared spectrum including central a -type Q-branch of  (CO2)2. Note resolved P-branch transitions for (CO2)3. The P-branch transitions are labeled only for subbands where KN≥15 (conditions: 1.8% CO2 in He, P0=1.0 bar).

1 x 4 960 x 540
2001
Tiedje, H.F., DeMille, S., MacArthur, L. and Brooks, R.L.,
Cavity ring-down spectroscopy of transient O2-O2 dimers ,
Canadian Journal of Physics, 2001, Volume 79, Issue 4, Pages 773-781,
DOI: 10.1139/p01-042, https://doi.org/10.1139/p01-042.

Figure 4. Portion of observed (CO2)2 +(CO2)3. Note 3:1 spacing of (CO2)3 Q-branches, and sharp appearance of the (CO2)3 rQ0-branch due to l-type doubling (conditions: 1.8% CO2 in He, P0=1 bar).

1 x 4 960 x 540
2002
T. Tassaing, Y. Danten, M. Besnard,
Infrared spectroscopic study of hydrogen-bonding in water at high temperature and pressure,
Journal of Molecular Liquids, 2002, Volume 101, Issue 1–3, Pages 149-158,
DOI: 10.1016/S0167-7322(02)00089-2.

Figure 3. Infrared spectrum in the OH stretching region of supercritical water at T=380C as function of pressure (density) in the range 200-250 bar (0.1-0.4 g.cm-3). The calculated characteristic frequencies of the OH stretching mode of small water clusters are reported for comparison.

1 x 2 800 x 1080
2002
T. Tassaing, Y. Danten, M. Besnard,
Infrared spectroscopic study of hydrogen-bonding in water at high temperature and pressure,
Journal of Molecular Liquids, 2002, Volume 101, Issue 1–3, Pages 149-158,
DOI: 10.1016/S0167-7322(02)00089-2.

Figure 2. Evolution of the OH anti-symmetric (ν3) and symmetric (Vi) stretching modes, and of the bending mode (ν2) of supercritical water at T=380°C as a function of pressure (density) in the range 25-180 bar (0.01-0.1 g.cm-3). (B) Infrared band intensities (Km.mol-1) associated with the OH stretching and bending modes of small cyclic water clusters as calculated by DFT methods (see text).

1 x 2 800 x 1080
2002
Vigasin A.A., Baranov Y.I., Chlenova G.V.,
Temperature Variations of the Interaction Induced Absorption of CO2 in the n1, 2n2 Region: FTIR Measurements and Dimer Contribution  ,
Journal of Molecular Spectroscopy, 2002, Volume 213, no. 1, Pages 51-56,
DOI: 10.1006/jmsp.2002.8529.

Figure 2. Temperature variations of the widths (a) and the exponents (b) in the generalized Lorentz formula (1). Empty circles refer to the low-frequency component; filled circles are used for the high-frequency one.

1 x 2 800 x 960
2003

Figure 2. The O2–O2 collision-induced absorption cross-section at room temperature from the UV to the NIR. Assignments and vibrational levels of the bands are also shown.

1 x 2 1280 x 1024
2003
Mikhail V. Tonkov, Nikolai N. Filippov,
Collision induced far wings of CO2 and H2O bands in IR spectra,
NATO Advanced Research Workshop on Weakly Interacting Molecular Pairs - Unconventional Absorbers of Radiation in the Atmosphere, NATO Science Series IV Earth and Environmental Sciences. Volume: 27,
Fontevraud, FRANCE, 2003, Pages 125-136.

 Figure 3. a) The absorption of H2O vapor due to collisions with N2 molecules. Data calculated with the strong collisions and ABC at Cbranch =0.6 models (1, 2); experimental data (3). b) The absorption of H2O vapor due to collisions with H2O molecules: experimental data (1); data calculated with the strong collisions approximation (2).

[10] Tonkov, M.V., Filippov, N.N., Timofeev, Yu. M., and Polyakov, A.V. (1996). A simple model of line mixing effect for atmospheric application: theoretical background and comparison with experimental profiles, JQSRT, 56, 783–795.
[12] Arefiev, V.N. (1990) Molecular Absorption in Gases and Attenuation of Laser Radiation in the Atmosphere. Thesis for a doctoral grade. Obninsk (in Russian).

1 x 2 800 x 960
2003
Y.I Baranov, W.J Lafferty, G.T Fraser, A.A Vigasin,
On the origin of the band structure observed in the collision-induced absorption bands of CO2,
Journal of Molecular Spectroscopy, 2003, Volume 218, Issue 2, Pages 260-261,
DOI: 10.1016/S0022-2852(02)00093-0.

Figure 1. Comparison of observed and simulated profile of a CO2 dimer band.

1 x 2 800 x 960
2004
Eric G. Diken, William H. Robertson, and Mark A. Johnson,
The Vibrational Spectrum of the Neutral (H2O)6 Precursor to the “Magic” (H2O)6-Cluster Anion by Argon-Mediated, Population-Modulated Electron Attachment Spectroscopy,
Journal of Physical Chemistry, A, 2004, Volume 108, Issue 1, Pages 64-68,
DOI: 10.1021/jp0309973.

Figure 3. Comparison between vibrational predissociation spectra of (a) (H2O)6-‚ Ar7, reproduced from ref 23, and (b) the neutral (H2O)6 complex, obtained by argon-mediated, population-modulated electron attachment

1 x 2 640 x 800
2004

Figure 4. Collision-induced rototranslational absorption band of interacting  N2 and CH4 molecules, the binary enhancement spectrum of nitrogen- methane mixtures at the temperatures of 126°, 149°, 179°, and 212°K. Our calculations ͑thin lines͒ are compared with existing measurements ͑heavy͒  ͑Ref. 4͒.

I. R. Dagg, , A. Anderson, , S. Yan, , W. Smith, , C. G. Joslin, and , L. A. A. Read, Collision-induced absorption in gaseous mixtures of nitrogen and methane, Canadian Journal of Physics, 1986, 64(11): 1467-1474, https://doi.org/10.1139/p86-260

1 x 4 800 x 1920
2004
Ptashnik I.V., Smith K.M., Shine K.P.,  Newnham D.A.,
Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm−1: Evidence for water dimers,
Quarterly Journal of Royal Meteorological Society, 2004, Volume 130 A, Issue 602, Pages 2391–2408,
DOI: 10.1256/qj.03.178.

Figure 4. Corrected residual between measurement and modified-HITRAN calculations with CKD-2.4 included. Bars show the measurement errors and errors of spectral line parameters fitting. (a) 20 hPa, 128 m, 299 K measurement. (b) 98 hPa, 9.7 m, 342 K measurement. To best fit the residual, the dimer spectrum is red-shifted by 12 cm-1 and 5 cm-1 for (a) and (b) respectively.

1 x 2 800 x 960
2004
Ptashnik I.V., Smith K.M., Shine K.P.,  Newnham D.A.,
Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm−1: Evidence for water dimers,
Quarterly Journal of Royal Meteorological Society, 2004, Volume 130 A, Issue 602, Pages 2391–2408,
DOI: 10.1256/qj.03.178.

Figure 5. Corrected residual between measurement and modified-HITRAN calculations with Ma and Tipping continuum included. Bars show the measurement errors and errors of spectral line parameters fitting. (a) 20 hPa, 128 m, 299°K measurement. (b) 98 hPa, 9.7 m, 342°K measurement. To best fit the residual, the dimer spectrum is red-shifted by 9 cm-1 and 5 cm-1 for (a) and (b) respectively.

1 x 2 800 x 960
2004
Sierk B., Solomon S., Daniel J.S., Portmann R.W., Gutman S.I., Langford A.O., Eubank C.S., Dutton E.G., Holub K.H.,
Field measurements of water vapor continuum absorption in the visible and near-infrared,
Journal of Geophysical Research, 2004, Volume 109 D, no. 8, Pages D08307,
DOI: 10.1029/2003JD003586.

Figure 15. Differential continuum in terms of optical depth computed from the transmission differences plotted in Figure 14. The estimated uncertainty of the retrieval is indicated by the grey shaded area. At large SZA the retrieved continuum becomes negative due to saturation effects. Both CKD models predict higher continuum absorption than observed, showing good agreement in the band wings.

2 x 2 1600 x 1080
2004
Sierk B., Solomon S., Daniel J.S., Portmann R.W., Gutman S.I., Langford A.O., Eubank C.S., Dutton E.G., Holub K.H.,
Field measurements of water vapor continuum absorption in the visible and near-infrared,
Journal of Geophysical Research, 2004, Volume 109 D, no. 8, Pages D08307,
DOI: 10.1029/2003JD003586.

Figure 17. Differential continuum in terms of optical depth computed from the transmission differences plotted in Figure 16. The estimated uncertainty of the retrieval is indicated by the grey shaded area. While CKD 2.4.1. agrees well with the observation, the continuum computed by MT_CKD_1.0 yields lower continuum than observed. The dimer model predicts an isolated feature near 746 nm, while the retrieval exhibits enhanced absorption around 750 nm.

2 x 2 1600 x 960
2004

Figure 1. Temperature effect on some bands of (H218O)2 trapped in Ne (Ne/H218O=800). Spectra recorded at 8 K (lower traces) and 4 K (upper traces) after annealing at 10 K. M: Q(1)-type line of 2ν1 of the monomer.
Plot 1. and 301. - (ν12)/(ν13) PD; Plot 601. and 401. - ν1/2ν2  PA;  Plot 201. and 501. - ν1/2ν1   PD.

3 x 2 1620 x 800
2004
Несмелова Л.И., Родимова О.Б., Творогов С.Д.,
Коэффициент поглощения водяного пара при различных температурах,
Оптическая спектроскопия и стандарты частоты. Молекулярная спектроскопия, Редактор(ы) Л.Н.Синица и Е.А.Виноградов,
Томск, Издательство ИОА СО РАН, 2004, Страницы 413-436,
ISBN: 5-94458-040-2.

Figure 17. Результаты расчетов коэффициента поглощения водяного пара при самоуширении в интервале 3.8-4.2 мкм при различных температурах, полученные в квазистатическом [58] и асимптотическом подходах.

[16] Burch D.E. Continuum absorption by H2O, Report AFGL-TR-81-0300 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Massachusetts 01731 (1982), 46 p.
[58] Ma Q. and R.H.Tipping, A far wing line shape theory and its application to the water vibrational bands. II. J.Chem. Phys. 96, No. 12, 8655-8663 (1992).

2 x 1 1600 x 640
2005

Figure 2. Water vapor absorption in the OH stretching fundamental. Points with error bars stand for experimental data from [9]. Light, dash, and solid traces refer to the monomer, dimer, and resulting spectral profiles, respectively.

1 x 3 800 x 1800
2005

Figure 3.  (1+1)  REMPI spectra recorded under three different conditions. In (a) only NO and Ar were present and the spectrum was recorded in the m/z=16 mass channel; in (b) NO, CH4, and Ar were present, and again the spectrum was recorded in the m/z=16 mass channel; in (c) NO, CH4 and Ar were present, with the spectrum being recorded in the m/z=46 mass channel. See text for details.

1 x 3 800 x 1440
2005

Figure 4. (1+1)  REMPI spectra of the five different isotopomers of NO·methane. Whole scans. Spectra recorded in the parent mass channel, except for the CH3D isotopomer, which was recorded in the CH3D+ masschannel (where a small bleed in of O+ signal is seen from the m/z=16 channel, cf. Fig. 3) —see text.

1 x 5 800 x 2400
2005

Figure 5. (1+1)  REMPI spectra of the five different isotopomers of NO·methane. Low wavenumber regions. Spectra recorded in the parent mass channel, except for the CH3D isotopomer, which was recorded in the CH3D+ mass channel—see text.

1 x 5 800 x 2400
2005

Figure 2. Dots: measurements of the rototranslational enhancement absorption spectra of hydrogen-methane gas mixtures at various temperatures (Refs. 4 and 8); solid lines: calculations of the binary rototranslational spectra.

4. G. Birnbaum, A. Borysow, and H. G. Sutter, J. Quant. Spectrosc. Radiat. Transf. 38, 189 (1987)
8. P. Codastefano, P. Dore, and L. Nencini, J. Quant. Spectrosc. Radiat. Transf. 36, 239 (1986)

1 x 7 800 x 3360
2005

Figure 1. Existing measurements [17] at temperatures of 163°, 195°, 243°, and 297°K (dots) are compared to calculated absorption spectra (solid line) in methane.

P. Codastefano, P. Dore, L. Nencini, Temperature dependence of the far-infrared absorption spectrum of gaseous methane, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 35, Issue 4, April 1986, Pages 255-263, https://doi.org/10.1016/0022-4073(86)90079-8

2 x 2 1600 x 960
2006
J. Thievin, Y. Cadudal, R. Georges, A.A. Vigasin,
 Direct FTIR high resolution probe of small and medium size Arn(CO2)m van der Waals complexes formed in a slit supersonic expansion,
Journal of Molecular Spectroscopy, 2006, Issue 2, Pages 141-152.

Table 5. Comparison between observation (experimental conditions #5) and simulation. The intensity of the simulated bands were adjusted to match the observed ones

1 x 5 960 x 1080
2006

Figure 4. The absorption profiles of the O2 - O2 feature near 477 nm at 294 K, 230 K and 184 K. Residuals from a comparison to a model function are shown as well. Further details are given in Section 2.5.

1 x 3 1920 x 1080
2006

Figure 5. The absorption profiles of the O2-O2 feature near 577 nm at 294 K taken from Ref. [2], 268 and 190 K. Residuals from a fit to a model function as discussed in Section 2.5 are shown as well.

1 x 3 1920 x 1080
2006

Figure 1. Depletion spectra of NH3 panel a and H2O panel b single molecules and clusters in He droplets of about 3500 atoms with an average number of about 1.5 and 2 captured molecules per droplet, respectively. Vertical dashed lines give the frequencies of the vibrational band origins of monomers. Sharp rovibrational lines of monomers are assigned Refs. 25 and 26. Additional strong bands are assigned to the absorption of the (NH3)k and (H2O)k clusters, which have been enhanced by hydrogen bonding. Cluster size, k, is indicated by numbers. Spectral peaks a – d in panel b are assigned to the dangling OH bonds of water clusters of different size.

1 x 2 1920 x 1080
2006
Susumu Kuma, Mikhail N. Slipchenko, Kirill E. Kuyanov, Takamasa Momose, and  Andrey F. Vilesov,
Infrared Spectra and Intensities of the H2O and N2 Complexes in the Range of the ν1- and ν3-Bands of Water,
Journal of Physical Chemistry, A, 2006, Volume 110, Issue 33, Pages 10046-10052,
DOI: 10.1021/jp0624754.

Figure 1. Depletion spectra of the N2-H2O complexes in the range of the ν3 band of H2O in He droplets. Pickup pressures: panel (a) PH2O ) 3*10-6 mbar, PN2 = 0; panel (b) PH2O=3  10-6 mbar, PN2 = 9*10-6 mbar. Panel (c) shows spectrum (b) with the contribution of spectrum (a) subtracted. This has been scaled to eliminate H2O linesfrom the spectrum. Smooth curves are Gaussian fits as described in the text. The origin of the ν3 band of H2O in He droplets is marked by the vertical dashed line. Pickup pressure dependences of the intensity of the peaks marked in panel (b) by arrows are shown in Figure 2.

1 x 3 1920 x 1080
2006
Susumu Kuma, Mikhail N. Slipchenko, Kirill E. Kuyanov, Takamasa Momose, and  Andrey F. Vilesov,
Infrared Spectra and Intensities of the H2O and N2 Complexes in the Range of the ν1- and ν3-Bands of Water,
Journal of Physical Chemistry, A, 2006, Volume 110, Issue 33, Pages 10046-10052,
DOI: 10.1021/jp0624754.

Figure 3. Depletion spectra of the N2-H2O complexes in the range of the î1 band of H2O in He droplets. Pickup pressures: panel (a) P(H2O) = 6*10-6 mbar, P(N2) = 0; panel (b) P(H2O) = 6*10-6 mbar, P(N2) = 9*10-6 mbar; panel (c) P(H2O) = 6*10-6 mbar, P(N2) = 1.8*10-5 mbar. Smooth curves are Gaussian fits as described in the text. The spectra were measured with a collimated laser beam, which gave about a factor of 5 larger effective laser energy flux, as compared with measurements in Figure 1. The origin of the î1 band of H2O in He droplets is marked by the vertical dashed line.

1 x 3 1920 x 1080
2007

Figure 1. Potential energy as a function of the intermolecular distance R for  some selected conformations of the dimer, (θN2a; θH2/N2b; Φ) = (90°; 90°; 0°) for H, (0°, 0°, 0°) for L, (90°, 90°, 90°) for X, (90°, 0°, 0°) for Ta and (0°, 90°, 0°) for Tb, of N2–H2 (left panel) and N2–N2 (right panel).

2 x 1 1360 x 800
2008
A.A. Vigasin, Y. Jin and S. Ikawa,
On the water dimer contribution to the OH stretching absorption band profile in pressurized water vapour,
Molecular Physics, 2008, Volume 106, Issue 9-10, Pages 1155-1159,
DOI: 10.1080/00268970802021353.

Figure 2. Typical examples of the spectral fit for the 650K isotherm

1 x 3 960 x 1720
2008
Lee M.S., Baletto F., Kanhere D.G., Scandolo S.,
Far-infrared absorption of water clusters by first-principles molecular dynamics ,
Journal of Chemical Physics, 2008, Volume 128, Issue 21, Pages 214506,
DOI: 10.1063/1.2933248.

Figure 3. Calculated far-IR absorption spectra per molecule for the dimer. The spectrum obtained by Scribano and Leforestier (Ref. 26) (dotted line) is also shown, for the comparison.
[26] Y. Scribano and C. Leforestier, J. Chem. Phys. 126, 234301 (2007)

1 x 2 800 x 1280
2008
Lee M.S., Baletto F., Kanhere D.G., Scandolo S.,
Far-infrared absorption of water clusters by first-principles molecular dynamics ,
Journal of Chemical Physics, 2008, Volume 128, Issue 21, Pages 214506,
DOI: 10.1063/1.2933248.

Figure 4. Calculated far-IR absorption spectra per molecule for the tetramer and the hexamer

1 x 2 960 x 1080
2008
Massimiliano Bartolomei, Marta I. Hernández, José Campos-Martínez, Estela Carmona-Novillo and Ramon Hernández-Lamoneda,
The intermolecular potentials of the O2–O2 dimer: a detailed ab initio study of the energy splittings for the three lowest multiplet states,
Physical Chemistry Chemical Physics, 2008, Volume 10, Pages 5374-5380,
DOI: 10.1039/B803555E.

Figure. 4 Intermolecular potentials for the the O2–O2 dimer singlet and triplet states as obtained for the four limiting geometries by combining CCSD(T) quintet energies and multireference splittings

2 x 4 1600 x 1920
2008
Podobedov V.B., Plusquellic D.F., Siegrist K.E., Fraser G.T., Ma Q., Tipping R.H.,
New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz,
Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, Volume 109, Pages 458-467,
DOI: 10.1016/j.jqsrt.2007.07.005.

Figure 2. Self-continuum absorption of water vapor at P = 2.13 kPa at different temperatures. Data for the 84.1 cm-1 window are not included in the ν2-fit presented by solid curves. The absorbance, A, is expressed as A= log10(1/T), where the maximum transmittance, T, is equal to unity. For convenience, the second scale in dB/km is also presented. For the pathlength used here (23.3 m), the absorbance of A = 1 corresponds to absorption coefficient of 429 dB/km.

1 x 2 800 x 1280
2008
Podobedov V.B., Plusquellic D.F., Siegrist K.E., Fraser G.T., Ma Q., Tipping R.H.,
New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz,
Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, Volume 109, Pages 458-467,
DOI: 10.1016/j.jqsrt.2007.07.005.

Figure 4. Foreign continuum data for two different mixtures of H2O/N2: 1.43/78.5 kPa (triangles) and 0.67/70 kPa (rhombs). For clarity, only the end-temperature data are shown. The curves present the ν2-fit of absorbance data over all available windows.

1 x 2 800 x 1280
2008
Ptashnik I. V.,
Evidence for the contribution of water dimers to the near-IR water vapour self-continuum,
Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, Volume 109, Pages 831 – 852,
DOI: 10.1016/j.jqsrt.2007.09.004.

Figure 7. The spectra of water vapour in 5300 cm-1 (a), and 3700 cm-1 (b) absorption bands, obtained in the experiments of Poberovsky [73, 74] for the cases (1): H2O + N2, and (2): pure H2O (see text); the difference spectrum (2)-(1), attributed by Poberovsky to water clusters; the difference spectrum of Poberovsky, modified in this work; WD according to the model [52]. (a) Experiment [73]: T=530°K, spectral resolution FWHM=15 cm-1, L=4.83 cm (1) and 0.49 cm (2); WD simulation: line strengths and positions from [52], HWHM=28 cm-1 [54], Keq(530°K)=0.0023 atm-1 (Curtiss et al. [59] extrapolation). (b): Experiment [74]: T=503°K, spectral resolution FWHM=10 cm-1; L=0.88 cm (1) and 0.08 cm (2); WD simulation: HWHM=25 cm-1, Keq(503 K)=0.0032 atm-1.

[52] Schofield D.P., Kjaergaard H.G. Calculated OH-stretching and HOH-bending vibrational transitions in the water dimer. Phys. Chem. Chem. Phys., 2003;5:3100–5.
[54] Ptashnik I.V., Smith K.M., Shine K.P., Newnham D.A. Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm-1: evidence for water dimers. Q. J. R. Meteorol Soc 2004;130:2391–408.
[59] Curtiss L.A, Frurip DJ, Blander M. Studies of molecular association in H2O and D2O vapors by measurement of thermal conductivity. J. Chem. Phys. 1979;71:2703–11
[73] Poberovsky A.V. Problemy fiziki atmosfery. Sbornik Trudov Univ Leningrad 1976;13:81–7 (in Russian).
[74] Poberovsky A.V. Diss. kand. fiz-mat nauk (PhD. thesis), Leningrad University, 1976 (in Russian).

1 x 2 800 x 960
2009

Figure 4. (Color online) Expanded portion of the (H2O)2 spectrum shown in Fig. 3. The smooth curve is a smoothed representation of the structured classical spectrum. The vertical lines represent the nearly exact quantum energies (and not intensities) from Ref. 13, described in detail in the text.

2 x 1 1280 x 480
2010

Figure 3. Parts of the infrared spectra of H2O/Ne = 1/140 matrix recorded at 3 K before and after annealing at 12.5 K (lower and upper trace, respectively). Sample deposited at 6 K for 6 h at 15 mmol/h. (a–d) Regions 3d, mOHb + d, 2msOHb and 3mOHf, respectively. Note that the mOHb + d region (b) is subdivided in two parts, one relating to ms, the other to ma. The decrease of the signal to noise ratio in (d) after annealing is due to noticeable decrease of the transmission. PA, PD: dimer; Tri: trimer; P: (H2O)n, n > 3.

1 x 4 800 x 1280
2010
J. Lamouroux, H. Tran, A.L. Laraia, R.R. Gamache, L.S. Rothman, I.E. Gordon, J.-M. Hartmann,
Updated database plus software for line-mixing in CO2 infrared spectra and their test using laboratory spectra in the 1.5–2.3 μm region,
Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, Volume 111, Issue 15, Pages 2321-2331,
DOI: 10.1016/j.jqsrt.2010.03.006.

Figure 3. Measured absorption coefficients (bottom) and associated square density normalized values (top) for pure CO2 at 295.15K and seven total pressures from 15 to 44atm: (b) Dens normalized Abs (10-6 cm-1/atm2) and (a) Abs Coeff (10-2 cm-1).

1 x 2 640 x 960
2010

Figure 2. Spectra of the OH-stretching bands of water molecules and clusters in He droplets of about 3500 atoms at spectral resolution of 1 cm-1 upon capture of one and three water molecules on average per droplet in panels a and b, respectively.

1 x 3 800 x 1080
2010
M. Dehghany, A.R.W. McKellar, Mahin Afshari and N. Moazzen-Ahmadi ,
High-resolution infrared spectroscopy of carbon dioxide dimers, trimers, and larger clusters,
Molecular Physics, 2010, Volume 108, Issue 17, Pages 2195-2205,
DOI: 10.1080/00268976.2010.496742.

Figure 1. Part of the fundamental band of the CO2 dimer for (12C16O2)2, (13C16O2)2, and 12C16O213C16O2. An analogous range is covered for each isotopomer, but this is not so obvious since the nuclear spin statistics are different. The asterisks mark lines that are partly or entirely due to the He–CO2 complex. The simulations use parameters from Table 2, an effective rotational temperature of 3 K, and an assumed Gaussian linewidth of 0.0017 cm-1.

1 x 3 800 x 1440
2010
M. Dehghany, A.R.W. McKellar, Mahin Afshari and N. Moazzen-Ahmadi ,
High-resolution infrared spectroscopy of carbon dioxide dimers, trimers, and larger clusters,
Molecular Physics, 2010, Volume 108, Issue 17, Pages 2195-2205,
DOI: 10.1080/00268976.2010.496742.

Figure 2. Portions of the observed and simulated combination bands of (a) the CO2 dimer and (b) the CO2 trimer.

1 x 2 800 x 960
2010
M. Dehghany, A.R.W. McKellar, Mahin Afshari and N. Moazzen-Ahmadi ,
High-resolution infrared spectroscopy of carbon dioxide dimers, trimers, and larger clusters,
Molecular Physics, 2010, Volume 108, Issue 17, Pages 2195-2205,
DOI: 10.1080/00268976.2010.496742.

Figure 3. Three CO2 cluster absorption features that can be assigned as parallel bands of symmetric or nearly symmetric tops. The bands in the upper two panels have similar, but not identical, rotational constants which are  appropriate for (CO2)n with n≈5–7. The band in the lower panel corresponds to n≈10.

1 x 3 800 x 1440
2010

Figure 3. The ab initio calculation of the dipole moment (a)  μx and (b) μy for six configurations of the CH4–N2 complex. Solid line—MP2 calculations; circles—CCSDT calculations. The numbers indicate the configurations.

1 x 2 800 x 960
2010
Figure 4. Dipole moment components (a) μx and (b) μy for configurations 3–5 of the CH4–N2 complex.
1 x 2 800 x 960
2011

Figure 1. Evolution of the spectrum of water trapped in N2 in the regions 5120–5170 (lower frame) and 7190–7150 cm-1 (upper frame) as a function of the 18O/16O isotopic ratio: (a) 0, (b) 1, (c) 3. Lower frame: the isotopic varieties of PA and PD are reported in this order. Upper frame: for natural water the fit of the dimer absorptions in the range 7185–7175 cm-1 has been reported.

1 x 2 960 x 1080
2011

Figure 2.  Identification of ST’s in Ne matrix at 3K. Lower trace: 16O/18O decoupling effect for the resonant (ν2 + ν3)PDMST(ν2PA + ν3PD) transitions. 18O/16O isotopic ratios of (a) 0, (b) 0.2, (c) 5. The isotopic varieties of PA and PD are reported in this order. Upper trace: ST(ν1PA + ν1PD) observed at 7251.5 cm-1 in absence of resonance. R(0), P(1), Q(1): rovibrational transitions of H2O monomer.

1 x 2 960 x 1080
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin,
Water vapour self-continuum and water dimers: 1. Analysis of recent work,
Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, Volume 112, Issue 8, Pages 1286–1303,
DOI: 10.1016/j.jqsrt.2011.01.012.

Figure 10. Smoothed spectra of WD absorption cross-section from Victorova and Zhevakin (V&Zh) [75], Scribano and Leforestier (S&L) [12] and Lee et al. [13] for temperatures around 296 K. The MTCKD [15] continuum model and empirical self-continuum of Burch [45] are also presented for comparison: (A) mm-wave region and (B) mid-to-far infrared spectral regions. The dashed lines in (B) show ratios (right hand axis) of the S&L and Lee et al. calculated spectra to the experimental continuum [45] (above 340 cm-1) and to the MTCKD-1.3 model (below 340cm-1). The equilibrium constant used by S&L: Keq,S&L(~296 K)=0.05 atm-1, is adopted here to represent WD absorption cross-section for all three works. This causes the cross-section curve from Lee et al. to be a factor 1.86 lower than in the original work. The absorption in dB/km from V&Zh and S&L is converted to cm2 molec-1 atm-1 units using formula: 2:3026 x 10-6 [dB/km]* T *Keq,S&L/ (273.15* NA* PWD), where NA=2.687x1019 molec cm-3; T~296 K; PWD is WD partial pressure (atm) assumed in the particular work:8x10-6 in V&Zh and 2.2x10-5 in  S&L. The implicit term Keq, S&L/Keq (where Keq is equilibrium constant applied for calculation in particular work) is used in the formula above to bring different calculations to similar conditions.

[12] Scribano Y, Leforestier C. Contribution of water dimers absorption to the millimeter and far infrared atmospheric water continuum. J Chem Phys2007;126:234301.
[13] Lee M-S, Baletto F, Kanhere DG, Scandolo S. Far-infrared absorption of  water clusters by first-principles molecular dynamics. J Chem Phys 2008; 128:214506.
[15] MTCKD Available from web-site: /http:// rtweb.aer.com/ continuum_frame.htmlS.
[45] Burch D. Continuum absorption by H2O, Air Force Geophysics Laboratory report,AFGL-TR-81-0300, Hanscom AFB, MA,1981.
[75] Viktorova AA, Zhevakin SA. Microradiowave absorption by dimers of atmospheric water vapor. Sov Phys Dokl 1970; 15:852–5.

1 x 3 1080 x 1440
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin,
Water vapour self-continuum and water dimers: 1. Analysis of recent work,
Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, Volume 112, Issue 8, Pages 1286–1303,
DOI: 10.1016/j.jqsrt.2011.01.012.

Figure 5. (A, B)The experimental water vapour self-continuum, derived from measurements made by Paynter et al. [41], in the 1600 and 3600 cm-1 water vapour bands at 295 K as compared to the expected spectra for bound and quasi- bound water dimers. The former is simulated using WD band intensities and positions from [9] (VPT2), Kbeq  (296 K)=0.03 atm-1 and Lorentzian profile FWHM=60 cm-1 for every WD subband. The spectrum of quasi-bound dimers is simulated using WM lines from HITRAN-2008 [52] with doubled intensities and Lorentzian width FWHM=20 cm-1 for every line (seeEq.(1)). The thick line demonstrates the total simulated spectrum of water dimers. Error bars show the experimental uncertainty of the continuum retrieval. (C, D)  Averaged spectra of the retrieved self-continuum Cs at different temperatures (left-hand axis) and the ratio of the spectra Cs (296 K)/Cs(351 K) (solid line; right-hand axis), illustrating the temperature dependence of the continuum. [

[9] Kjaergaard H, Garden A, Chaban G, Gerber R, Matthews D, Stanton J. Calculation of vibrational transition frequencies and intensities in water dimer: comparison of different vibrational approaches. J Phys Chem  A2008;112:4324–35 [HG Kjaergaard, personal communications,  2010].
41] Paynter DJ, Ptashnik IV, Shine KP, Smith KM, McPheat R, Williams RG.  Laboratory measurements of the water vapor continuum in the 1200–8000 cm-1 region between 293 K and 351 K. J Geophys Res 2009;114:D21301.
[52] Rothman LS, Gordon IE, Barbe A, Chris Benner A, Bernath PF, et al. The HITRAN 2008 molecular spectroscopic database. JQSRT 2009;110:533–72.

2 x 3 1600 x 1440
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin,
Water vapour self-continuum and water dimers: 1. Analysis of recent work,
Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, Volume 112, Issue 8, Pages 1286–1303,
DOI: 10.1016/j.jqsrt.2011.01.012.

Figure 8. Comparison of temperature dependencies for pure water vapour continuum absorption in mm-wave and mid-IR spectral ranges. Experimental data for 190 and 239 GHz are from [67] and [68], respectively; CO2 laser absorptions are from [69,70]. Solid lines show the result of calculations using formula (2a) and universal parameters n=1.63 and Do=1700 K. The data for infrared continuum (right axis) are shown in arbitrary units. The Figure is adopted from [63].

[63] Vigasin AA. Water vapor continuous absorption in various mixtures: possible role of weakly bound complexes. JQSRT 2000; 64: 25–40.
[67] Bauer A, Godon M. Temperature dependence of water vapor absorption in line wings at 190 GHz. JQSRT 1991; 46:211–20.
[68] Bauer A, Godon M, Carlier J, Ma Q. Water vapor absorption in the atmospheric window at 239 GHz. JQSRT 1995; 53:411–23.
[69] Aref’ev VN. Molecular absorption of radiation by water vapour in the relative transparency window of the atmosphere at 8–13 μm. Opt Atmos 1989; 2:1034 inRussian.
[70] Hinderling J, Sigrist MW, Kneubuhl FK. Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14 μm atmospheric window. Infrared Phys 1987; 27:63–120.

2 x 1 1280 x 480
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin,
Water vapour self-continuum and water dimers: 1. Analysis of recent work,
Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, Volume 112, Issue 8, Pages 1286–1303,
DOI: 10.1016/j.jqsrt.2011.01.012.

Figure 10B. Smoothed spectra of WD absorption cross-section from Scribano and Leforestier (S&L) [12] and Lee et al. [13] for temperatures around 296 K. The MTCKD [15] continuum model and empirical self-continuum of Burch [45] are also presented for comparison in the mid-to-far infrared spectral regions.

[12] Scribano Y., Leforestier C. Contribution of water dimers absorption to the millimeter and far infrared atmospheric water continuum. J. Chem. Phys., 2007;126:234301.
[13] Lee M.-S., Baletto F., Kanhere D.G., Scandolo S. Far-infrared absorption of  water clusters by first-principles molecular dynamics. J. Chem. Phys., 2008; 128:214506.
[15] MTCKD Available from web-site: /http:// rtweb.aer.com/ continuum_frame.htmlS.
[45] Burch D. Continuum absorption by H2O, Air Force Geophysics Laboratory report,AFGL-TR-81-0300, Hanscom AFB, MA,1981.

2 x 1 1280 x 480
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin,
Water vapour self-continuum and water dimers: 1. Analysis of recent work,
Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, Volume 112, Issue 8, Pages 1286–1303,
DOI: 10.1016/j.jqsrt.2011.01.012.

Figure 10. Smoothed spectra of WD absorption cross-section from Victorova and Zhevakin (V&Zh) [75], Scribano and Leforestier (S&L) [12] and Lee et al. [13] for temperatures around 296 K. The MTCKD [15] continuum model and empirical self-continuum of Burch [45] are also presented for comparison: (A) mm-wave region and (B) mid-to-far infrared spectral regions. The dashed lines in (B) show ratios (right hand axis) of the S&L and Lee et al. calculated spectra to the experimental continuum [45] (above 340 cm-1) and to the MTCKD-1.3 model (below 340cm-1). The equilibrium constant used by S&L: Keq,S&L(~296 K)=0.05 atm-1, is adopted here to represent WD absorption cross-section for all three works. This causes the cross-section curve from Lee et al. to be a factor 1.86 lower than in the original work. The absorption in dB/km from V&Zh and S&L is converted to cm2 molec-1 atm-1 units using formula: 2:3026 x 10-6 [dB/km]* T *Keq,S&L/ (273.15* NA* PWD), where NA=2.687x1019 molec cm-3; T~296 K; PWD is WD partial pressure (atm) assumed in the particular work:8x10-6 in V&Zh and 2.2x10-5 in  S&L. The implicit term Keq, S&L/Keq (where Keq is equilibrium constant applied for calculation in particular work) is used in the formula above to bring different calculations to similar conditions.

[12] Scribano Y., Leforestier C. Contribution of water dimers absorption to the millimeter and far infrared atmospheric water continuum. J. Chem. Phys., 2007; 126: 234301.
[13] Lee M.-S., Baletto F., Kanhere D.G., Scandolo S. Far-infrared absorption of  water clusters by first-principles molecular dynamics. J. Chem. Phys., 2008; 128: 214506.
[15] MTCKD Available from web-site: /http:// rtweb.aer.com/ continuum_frame.htmlS.
[45] Burch D. Continuum absorption by H2O, Air Force Geophysics Laboratory report,AFGL-TR-81-0300, Hanscom AFB, MA,1981.
[75] Viktorova A.A., Zhevakin S.A. Microradiowave absorption by dimers of atmospheric water vapor. Sov. Phys. Dokl., 1970; 15:852–855.

1 x 3 800 x 1440
2011

Figure 3. Observed and simulated spectra showing bands assigned to the S4 isomer of (CO2)6. The perpendicular band in the lower panel is overlapped by bands of (CO2)2 and of the cyclic (brown) and noncyclic (blue) isomers of (CO2)3 as shown, while the Q- and R-branches of the parallel band in the upper panel are relatively clear. Observed and simulated spectra showing bands assigned to the S4 isomer of (CO2)6. The perpendicular band in the lower panel is overlapped by bands of (CO2)2 and of the cyclic (brown) and noncyclic (blue) isomers of (CO2)3 as shown, while the Q- and R-branches of the parallel band in the upper panel are relatively clear.

1 x 6 1200 x 2400
2011

Figure 1. Parts of the infrared spectrum of a H2O/Ne = 1/150 matrix recorded at 3 K at the resolution of 1 cm-1 in the P6 and P8 domains. Sample deposited at 5.8 K for 6 h at a rate of 7 mmol/h. Tri: water trimer. (b) Spectra recorded before (upper trace) and after annealing at 12 K (lower trace).

1 x 4 800 x 1080
2011

Figure 3. Spectrum of H2O trapped in Ne in the P5 region. Same conditions of deposition as for Fig. 1. (a) Spectra recorded at the resolution of 0.5 cm-1. (b) Spectra recorded before (upper trace) and after annealing at 12 K (lower trace).

1 x 2 640 x 800
2011

Figure 4. Local-monomer IR spectra in the OH-stretch region of the indicated isomers of the hexamer obtained with the local-monomer model

1 x 6 960 x 1080
2011

Figure 6. Local-monomer IR spectra of intramolecular modes of the lowest energy isomer of the indicated cluster.

1 x 3 960 x 1080
2012

Figure 1. Comparison of the spectrum of the dipole time correlation function ◦calculated at 400C with the experimental IR spectrum. The experimental data in (a) by Tassaing et al. (Ref. 6) are taken at 380C with 0.009 g cm−3 and those by Vigasin et al. (Ref. 7) at 377C with 0.0105 g cm−3. In (b), the data by Tassaing et al. are at 380C with 0.04 g cm−3 and those by Vigasin et al. are at 377C with 0.0405 g cm−3. The calculated spectrum is shifted by 50 cm−1 to the higher frequency for comparison of the line shape to the experimental one.

1 x 2 960 x 1080
2012
Massimiliano Bartolomei, Fernando Pirani, Antonio Lagan, and Andrea Lombardi,
A Full Dimensional Grid Empowered Simulation of the CO2 + CO2 Processes,
Journal of Computational Chemistry, 2012, Volume 33, Issue 22, Pages 1806–1819,
DOI: 10.1002/jcc.23010.

Figure 4. Comparison of the interaction energies for selected dimer geometries of a pair of rigid monomers (black lines) and of a rigid plus a stretched (both CAO bonds of monomer a have been symmetrically stretched of 10% with respect to equilibrium) monomer (red dashed lines). The Ta configuration refers to that with the stretched monomer a and the unstretched monomer b perpendicular to it and lying on the line connencting the two molecular centers of mass. Bond-bond results are plotted in the lower panel while those corresponding to the ab initio calculations are plotted in the upper panel.

1 x 2 800 x 960
2012
Massimiliano Bartolomei, Fernando Pirani, Antonio Lagan, and Andrea Lombardi,
A Full Dimensional Grid Empowered Simulation of the CO2 + CO2 Processes,
Journal of Computational Chemistry, 2012, Volume 33, Issue 22, Pages 1806–1819,
DOI: 10.1002/jcc.23010.

Figure 5. Comparison of the interaction energies for selected dimer geometries of a pair of rigid monomers (black lines) and of a rigid plus a stretched (the two C-O bonds of monomer a have been respectively stretched and shrunk of 10% with respect to equilibrium) monomer (red dashed lines). In particular the stretched C-O bond is the one lying on the intermolecular separation R and pointing closer to the monomer b in the L configuration. The Ta configuration refers to that with the stretched monomer a and the unstretched monomer b  perpendicular to it and lying on the line connecting the two molecular CM. Bond-bond results are plotted in the lower panel while those corresponding to present ab initio calculations are in the upper panel.

1 x 2 800 x 960
2013

Figure 2. The observed dimer spectrum (a). The ab intio calculated [21]  dimer spectrum [(b) upper trace]. The water vapor continuum absorption measured in moist nitrogen [28] at atmospheric pressure (d). The calculated collision-induced absorption [32] [(c) lower trace], the absorption is shown multiplied by factor of 1000 to make it visible). All spectra correspond to water vapor at 13 Torr and 296 K.
[21] Y. Scribano and C. Leforestier, J. Chem. Phys. 126, 234301 (2007).
[28] M. A. Koshelev, E. A. Serov, V. V. Parshin, and M. Yu. Tretyakov, J. Quant. Spectrosc. Radiat. Transfer 112, 2704 (2011).
[32] C. Leforestier, R. H. Tipping, and Q. Ma, J. Chem. Phys. 132, 164302 (2010).

 

3 x 1 750 x 480
2013
Thalman, R. and Volkamer, R.,
Temperature dependent absorption cross-sections of O2–O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure,
Physical Chemistry Chemical Physics, 2013, Volume 15, Issue 37, Pages 15371-15381.,
DOI: 10.1039/c3cp50968k.

Figure 4. Comparison of peak and integrated cross-sections to available literature values at four wavelengths

2 x 4 1280 x 1920
2014

Figure 2. Collision-induced absorption spectrum (in cm−1 /amagat2 ) of N2 by N2 (a) at 149 K, (b) at 228 K, and (c) at 296 K, as obtained from measurements12, 13 (circles) and from the CMDS calculations using the present ab initio dipole moment and the intermolecular potential of Ref. 16 (continuous lines). The error bars correspond to ± 10%.

1 x 3 640 x 1340
2014
Keith P. Shine, Igor Ptashnik, Gaby Rädel,
The Water Vapour Continuum: Brief History and Recent Developments,
Surveys in Geophysics, 2014, Volume 33, Issue 3-4, Pages 1-21,
DOI: 10.1007/s10712-011-9170-y.

Figure 3. Self- and foreign-continuum cross-section (upper and lower panels respectively) as retrieved from laboratory measurements in Ptashnik et al. (2011, 2012) (CAVIAR), along with their associated uncertainties, compared to the far-wing model of Tipping and Ma (1995) and the MTCKD-2.5 continuum model.

Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. (2011b) Water vapor continuum absorption in near-infrared windows derived from laboratory measurements. J Geophys Res 116:D16305
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. (2012) Water vapour foreign continuum absorption in near-infrared windows from laboratory measurements. Phil Trans Roy Soc A (to appear). doi:10.1098/rsta.2011.0218
Tipping R.H., Ma Q. (1995) Theory of the water vapor continuum and validations. Atmos Res 36:69–94

1 x 2 1200 x 1560
2014
T Földes, T Vanfleteren, M Herman,
Communication: A rotationally resolved (2OH) overtone band in the water dimer (H2O)2,
Journal of Chemical Physics, 2014, Volume 141, Issue 11, Pages 111103,
DOI: 10.1063/1.4896163.

Figure 2. Focus on the rotational structure of the (H2O)2 band observed around 7256.5 cm−1 in the cw-CRDS spectra of a supersonic expansion of H2O in Ne, Ar, and Kr carrier gases. Monomer lines and H2O-rare gas lines are also observed. The simulated structure is presented at the bottom.

1 x 4 960 x 1680
2014
Y.N. Kalugina, I.A. Buryak, Yosra Ajili, A.A. Vigasin, Nejm Eddine Jaidane, and Majdi Hochlaf,
Explicit correlation treatment of the potential energy surface of CO2 dimer,
The Journal of Chemical Physics, 2014, Volume 140, Pages 234310 (2),
DOI: 10.1063/1.4882900.

Figure 3. Potential energy cuts along the R coordinate for Linear 0-0-0 (i.e.,θ12=00,φ=00; left panel) and near-equilibrium Slipped Parallel (i.e., θ12=600, φ=00; right panel) configurations. These cuts are computed using CCSD(T)/aug-cc-pVXZ (X=D,T,Q,CBS), CCSD(T)-F12(a,b)/aug-cc-pVTZ, MP2/aug-cc-pVQZ. We give also the SAPT potential of Bukowski et al.35 for comparison. 1a0=1 bohr=0.529177 A.
35. S.R. Bukowski, J. Sadlej, B. Jeziorski, P. Jankowski, K. Szalewicz, S. A. Kucharski, H. L. Williams, and B. M. Rice, J. Chem. Phys. 110, 3785 (1999).
48. K. A. Peterson, D. E. Woon, and T. H. Dunning, Jr., J. Chem. Phys. 100, 7410 (1994).
49 A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, and J. Olsen, Chem. Phys. Lett. 302, 437 (1999).

1 x 2 800 x 1280
2014
Y.N. Kalugina, I.A. Buryak, Yosra Ajili, A.A. Vigasin, Nejm Eddine Jaidane, and Majdi Hochlaf,
Explicit correlation treatment of the potential energy surface of CO2 dimer,
The Journal of Chemical Physics, 2014, Volume 140, Pages 234310 (2),
DOI: 10.1063/1.4882900.

FIGURE 4. Potential energy cuts along the R coordinate for Linear 0-0-0 (left panel) and Slipped Parallel 60-60-60 (right panel) configurations. These cuts are computed using CCSD(T)-F12b/aug-cc-pVTZ. We give also the individual contribution of each multipolar expansion term. See text for more details. 1a0 = 1 bohr = 0.529177 Å.

1 x 2 800 x 1280
2015

Figure 2. CH4–CO interaction energies for different basis sets and methods as a function of the intermolecular distance for selected angular orientations.

2 x 3 1600 x 1440
2015
M. Yu. Tretyakov, A. A. Sysoev, T. A. Odintsova, and A. A. Kyuberis,
COLLISION-INDUCED DIPOLE MOMENT AND MILLIMETER AND SUBMILLIMETER CONTINUUM ABSORPTION IN WATER VAPOR,
Radiophysics & Quantum Electronics, 2015, Volume 58, no. 4,
DOI: 10.1007/s11141-015-9600-7.

Figure 5. (a) The frequency dependence of studied absorption (17), which was obtained in this paper using truncated line forms (12) and (14) (on this scale, they merge into one dotted curve 1) and the spectrum taken from [12] solid curve 2) for a frequency range of 0 to 500 cm−1 at T = 300 K. (b) Fragment of the spectra in a frequency range of 0 to 10 cm−1. Line form (12) corresponds to the lower curve 3, and line form (14), to the upper curve 4.

2 x 1 1360 x 480
2015
Olga B. Rodimova,
Continuum water vapor absorption in the 4000–8000 cm-1 region,
Proc. SPIE 9680, 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics,
SPIE - The international society for optical engineering, 2015, Pages 968002,
DOI: 10.1117/12.2205332.

Table 6. Experimental Н2О self-continuum (T =296 K) versus predicted absorption spectra of bound and metastable dimers1 and present calculations for the  5200–5500 cm-1 band. The black dots are the experimental data, the triangles are the stable dimer absorption coefficients,  and the gray curves represent the calculated results using the κLorχ line shape. The frequency step is 50 cm-1.

3 x 1 1920 x 480
2015
Ruslan E. Asfin, Jeanna V. Buldyreva, Tatyana N. Sinyakova, Daniil V. Oparin, Nikolai N. Filippov,
Evidence of stable van der Waals CO2 clusters relevant to Venus atmosphere conditions,
Journal of Chemical Physics, 2015, Volume 142, Issue 5, Pages 051101,
DOI: 10.1063/1.4906874.

Figure 1. Transmittances recorded in the ν1/2ν2 Fermi dyad region at 300 K. (a) Pure CO2 gas. Increasing gas pressure induces, simultaneously, a rise of the collision-induced absorption and a transformation of the dimeric bands. The gas pressures are converted into densities in amagat (Table II of Ref. 11).
(b) 14.9-amagat CO2 mixed with various quantities of Ar. The absorption induced by collisions of CO2 monomers with Ar atoms has only a small influence on the band shape evolution which is dominated by the dimer signatures.

1 x 2 960 x 1080
2015
T.E. Klimeshina, O.B. Rodimova,
Water-vapor foreign-continuum absorption in the 8–12 and 3–5 μm atmospheric windows,
Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, Volume 161, Pages 145–152,
DOI: 10.1016/j.jqsrt.2015.04.005.

Figure 1. Н2О–N2 absorption coefficient in the 8–20 μm region. The full circles are the measured data from [7], the open circles are the calculated data from [19], and the curve is the calculation from [16]; Θ=296 (a)and 430K (b).

[7] Burch DE, Alt RL. Continuum absorption by H
2O in the 700–1200 cm-1 and 2400–2800 cm-1 windows. Scientific report no. 1. AFGL-TR-84-0128; 1984.
[16] Ma Q, Tipping RH. The density matrix of H2O–N
2 in the coordinate representation: a Monte Carlo calculation of the far-wing line shape. J Chem Phys 2000;112:574–84.
[19] Rodimova OB. Theoretical researches of the absorption and photo-chemistry processes and their application in radiation codes of theclimate models [Thesis]. Dokt Phys-Math Sci Tomsk; 2003.

2 x 1 1360 x 480
2015
Пташник И.В. ,
Континуальное поглощение водяного пара: краткая предыстория и современное состояние проблемы,
Оптика атмосферы и океана, 2015, Т. 28, № 05, Страницы 443-459,
DOI: 10.15372/AOO20150508.

Рисунок 2. Сглаженные спектры поглощения димера воды в миллиметровом (А) и в среднем ИК (Б) диапазонах согласно расчетам Викторовой и Жевакина (V&Zh) [12], Вигасина и Членовой (V&Ch) [14], Yukhnevich и Tarakanova (Yu&T) [15], Scribano и Leforestier (S&L) [16] и Lee и др. [17] в сравнении с экспериментальными данными Burch [22], Podobedov et al. [97] и полуэмпирической моделью континуума MT_CKD [25].
Рисунок заимствован из работы [4].

[4] Shine K.P., Ptashnik I.V., Rädel G. The water vapour continuum: Brief history and recent developments // Surv. Geophys. 2012. V. 33. Ð. 535–555. DOI: 10.1007/s10712-011-9170-y.
[12] Викторова А.А., Жевакин С.А. Поглощение микрорадиоволн в воздухе димерами водяного пара // Докл. АН СССР. 1966. Т.171. №5. С.1061-1064.
[14] Вигасин А.А., Членова Г.В. Спектр димеров воды в области длин волн > 8 мкм и ослабление излучения в атмосфере // Изв. АН СССР. Физ. атмосф. и океана. 1984. Т.20. №7. С.657-661.
[15] Yukhnevich G.V., Tarakanova E.G. Some properties of the potential energy surface and vibrational spectrum of a strong hydrogen bond complex // J. Mol. Struct. 1988. V. 117. P. 495–512.
[16] Scribano Y., Leforestier C. Contribution of water dimers absorption to the millimeter and far infrared atmospheric water continuum // J. Chem. Phys. 2007. V. 126. P. 234301-1–234301-12.
[17] Lee M.-S., Baletto F., Kanhere D.G., Scandolo S. Far-infrared absorption of water clusters by firstprinciples molecular dynamics // J. Chem. Phys. 2008. V. 128. P. 214506-1–214506-5.
[22] Burch D.E. Continuum absorption by H2O // Report AFGL-TR-81-0300. Air Force Geophysics Laboratory. Hanscom AFB, MA. 1981. 46 ð.
[25] Mlawer E.J., Payne V.H., Moncet J.-L., Delamere J.S., Alvarado M.J., Tobin D.D. Development and recent evaluation of the MT_CKD model of continuum absorption // Phil. Trans. Roy. Soc. A. 2012. V. 370. Ð. 2520– 2556. DOI: 10.1098/rsta.2011.0295.
[97] Podobedov V.B., Plusquellic D.F., Siegrist K.E., Fraser G.T., Ma Q., Tipping R.H. New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109. P. 458–467.

1 x 2 800 x 960
2015
Пташник И.В. ,
Континуальное поглощение водяного пара: краткая предыстория и современное состояние проблемы,
Оптика атмосферы и океана, 2015, Т. 28, № 05, Страницы 443-459,
DOI: 10.15372/AOO20150508.

Figure 9. Экспериментальный континуум чистого водяного пара из работы Paynter и др. [77] в полосах 1600 (а) и 3600 см-1(б), полученный при 295K, в сравнении с моделями спектра связанных (“Bound”) и квазисвязанных (“Quasibound”) димеров. Спектр связанных димеров смоделирован на основе данных об интенсивностях и центрах полос из работ [60,79], константы димеризации Kbeq=0,03 атм-1 и лоренцевского контура шириной 60 cm-1 для каждой полосы димера. Спектр квазисвязанных димеров смоделирован с использованием параметров линий мономера воды из HITRAN-2012 [80] с удвоенным интенсивностями, лоренцевской шириной 20 см-1 для каждой линии и константой димеризации Kmeq =0,06 атм-1. Суммарный спектр димеров показан жирной линией. Рисунок заимствован из работы [65].

[60] Kjaergaard H., Garden A., Chaban G., Gerber R., Matthews D., Stanton J. Calculation of vibrational transition frequencies and intensities in water dimer: Comparison of different vibrational approaches // J. Phys. Chem. A. 2008. V. 112. P. 4324–4335.
[65] Ptashnik I.V., Shine K.P., Vigasin A.A. Water vapour self-continuum and water dimers. 1. Review and analysis of recent work // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1286–1303.
[77] Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., Williams R.G. Laboratory measurements of the water vapor continuum in the 1 200–8 000 cm–1 region between 293 and 351 K // J. Geophys. Res. 2009. V. 114. P. D21301-1–D21301-23.
[79] Kuyanov-Prozument K., Choi M.Y., Vilesov A.F. Spectrum and infrared intensities of OH-stretching bands of water dimers // J. Chem. Phys. 2010. V. 132. P. 014304-1–014304-7.
[80] Rothman L.S., Gordon I.E., Babikov I.E., Barbe A., Benner C.D., Bernath P.F., Birk M., Bizzocchi L., Boudon V., Brown L.R., Campargue A., Chance K., Cohen E.A., Coudert L.H., Devi V.M., Drouin B.J., Fayt A., Flaud J.-M., Gamache R.R., Harrison J.J., Hartmann J.-M., Hill C., Hodges J.T., Jacquemart D., Jolly A., Lamouroux J., Le Roy R.J., Li G., Long D.A., Lyulin O.M., Mackie C.J., Massie S.T., Mikhailenko S., Müller S.P., Naumenko O.V., Nikitin A.V., Orphal J., Perevalov V., Perrin A., Polovtseva E.R., Richard C., Smith M.A.H., Starikova E., Sung K., Tashkun S., Tennyson J., Toon G.C., Tyuterev Vl.G., Wagner G. The HITRAN 2012 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 4–50.

1 x 2 800 x 960
2016
A. A. Simonova, I. V. Ptashnik,
Estimation of water dimers contribution to the water vapour continuum absorption within 0.94 and 1.13 μm bands,
Proc. SPIE  v.10035, 22nd International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, Editor(s) Gennadii G. Matvienko; Oleg A. Romanovskii,
Tomsk, Russian Federation, SPIE - The international society for optical engineering, 2016, Pages 100350K,
ISBN: 10.1117/12.2249458.

Figure 2. The results of fitting of the water dimers model spectrum to the retrieved continuum spectrum in the absorption bands of 8800 and 10600 cm-1 at a pressure of 1000 mbar, temperature of 400 K and an optical length of 17.7 m.

1 x 2 1080 x 960
2017
Daniil V. Oparin, Nikolai N. Filippov, I. M. Grigoriev, Alexander P Kouzov,
Effect of stable and metastable dimers on collision-induced rototranslational spectra: Carbon dioxide – rare gas mixtures,
Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, Volume 196, Pages 87-93,
DOI: 10.1016/j.jqsrt.2017.04.002.

Figure 7. Spectral functions for the CO2–Ar (a) and CO2–Xe (b) systems: experimental (dots) and calculated data (curves). Experimental data for the infrared region are taken from Ref. [33]. The insert in Fig. 7(a) shows details of the spectral function in the microwave region with the experimental data obtained for the following wavenumbers: 0.8 [39], 2.3 [40], 4.6 and 15.1 cm-1 [41].

1 x 3 960 x 1620
2017
Daniil V. Oparin, Nikolai N. Filippov, I. M. Grigoriev, Alexander P Kouzov,
Effect of stable and metastable dimers on collision-induced rototranslational spectra: Carbon dioxide – rare gas mixtures,
Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, Volume 196, Pages 87-93,
DOI: 10.1016/j.jqsrt.2017.04.002.

Figure 5. Spectral function components for the CO2–Ar (a) and CO2–Xe systems (b) at 296 K. The curves show the contributions from collisions responsible for the formation of stable (1) and metastable (2) dimers and ordinary collisions (3).

1 x 2 640 x 960
2017

Figure 1. Left (a):  χ-function calculated by Eq. (10) with the use of the parameters A=20 and Δνwing=11 cm-1 as a function of the detuning frequency.  Right (b): Lorentz profile with a half-width of 5 *10-3 cm-1 (150 MHz) (bold solid line); the same profile with the wings cut off at the  ±25 cm-1 detuning and the cut-off line “brought down” to the zero level (as in the CKD model) (thin solid line); the latter profile with the added wings, which are calculated by Eq. (8) using the χ-function shown on Fig.1a is presented by the dashed line.

2 x 1 1300 x 480
2017

Figure 2. Experimental spectra of the water vapor continuum bands at 1600 cm-1 from the paper17 approximated by the model including the contribution from the water dimers and the empirically calculated contribution from the line wings.The dots are the experimental data,the bold solid curve represents the model, the bold dashed curve, the thin dashed curve,and the thin solid curve are the contributions from the bound dimers,metastable dimers,and line wings, respectively. (a) The contribution from the line wings is calculated using Eqs. (8)–(10). A=32 for the 1600 cm-1 band , Δνwing=11 cm-1 for the both bands. (b) The contribution from the line wings is calculated using Eqs. (8)–(10). A=18.5 for the 3600 cm-1 band, Δνwing=11 cm-1 for the both bands.
[17.] Ptashnik I.V., Shine K.P., Vigasin A.A. Water vapour self-continuum and water dimers: 1. Analysis of recent work. J. Quant. Spectrosc. Radiat. Transf. 2011; 112: 1286–1303.

2 x 1 1360 x 480
2017

Figure 3. Experimental spectra of the H2O continuum in far infrared [31]  range approximated by the model allowing for the contribution from the water dimers and the empirically calculated contribution from the line wings.The dots are the experimental data,the bold solid curve represents the model,the bold dashed curve,the thin dashed curve,and the thin solid curve are the contributions from the bound dimers,metastable dimers,and line wings, respectively. (a)The contribution from the line wings calculated by using Eqs. (8)–(10). A=14  for the left-hand  panel,and Δνwing=11 cm-1 in both cases. P=1 atm. T=296 K. (b) The contribution from the line wings calculated by using Eqs. (8)–(10). A=14  for the left-hand  panel,and Δνwing=11 cm-1 in both cases. P=1 atm. T=296 K.

2 x 1 1360 x 480
2018

Figure 6. Spectral dependence of self-continuum cross-section at room temperature in the 2.1 μm window (4200-5200 cm-1). The two last versions of the MT_CKD model (V3.0 and V3.2) are compared to the cavity-based measurements, to the FTS results obtained in Tomsk (Ptashnik et al., 2013, 2015) or by the CAVIAR consortium (Ptashnik et al., 2011). The 30–50% error bars on the Tomsk2015 FTS values and the small error bars on our laser based values are not plotted, for clarity. The zoom highlights the present CRDS values near 5000 cm-1.

  1. Ptashnik, I. V., McPheat, R. A., Shine, K. P., Smith, K. M., and Williams, R. G.: Water vapor self – continuum absorption in near – infrared windows derived from laboratory measurements, J. Geophys. Res., 116, D16305, https://doi.org/10.1029/2011JD015603, 2011a.
  2. Ptashnik, I. V., Petrova, T. M., Ponomarev, Y. N., Shine, K. P., Solodov, A. A., and Solodov, A. M.: Near-infrared water vapour self-continuum at close to room temperature, J. Quant. Spectrosc. Ra. Transf., 120, 23–35, https://doi.org/10.1016/j.jqsrt.2013.02.016, 2013.
  3. Ptashnik, I. V., Petrova, T. M., Ponomarev, Y. N., Solodov, A. A., and Solodov, A. M.: Water vapor continuum absorption in near-IR atmospheric windows, Atmos. Ocean. Opt., 28, 115–120, https://doi.org/10.1134/S1024856015020098, 2015.
  4. Didier Mondelain, Semen Vasilchenko, Peter Cermak, Samir Kassi,· Alain Campargue, The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 µm, Physical Chemistry Chemical Physics, 2015; 17(27), 17762-17770 DOI: 10.1039/C5CP01238D
  5. Ventrillard, I., Romanini, D., Mondelain, D., and Campargue, A. Accurate measurements and temperature dependence of the water vapor self-continuum absorption in the 2.1 μm atmospheric window, J. Chem. Phys., 143, 134304, https://doi.org/10.1063/1.4931811, 2015.
  6. Campargue, A., Kassi, S., Mondelain, D., Vasilchenko, S., and Romanini, D. Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model, J. Geophys. Res.-Atmos., 121, 180–13,203, https://doi.org/10.1002/2016JD025531, 2016.
  7. Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, J. Quant. Spectrosc. Ra. Transf., 201, 171–179, 2017.
1 x 2 800 x 960
2019
Igor Ptashnik, Tatyana E. Klimeshina, Alexander A. Solodov, Andrei A. Vigasin,
Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 μm bands,
Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, Volume 228, Pages 97-105,
DOI: 10.1016/j.jqsrt.2019.02.024.

Figure 3. Comparison of the self-continuum optical depth retrieved within 1600 cm−1 (left panel) and 3600 cm−1 (right panel) absorption bands using HITRAN-2012 [26] with weak lines from UCL [27] and using HITRAN-2016 [31]. Measurement conditions: 11.5 mb pure water vapour at 288.5°K, path length 28.8 m.
[26] Rothman L., Gordon I., Babikov I., Barbe A., C. Benner D., et al. The HITRAN 2012 molecular spectroscopic database. JQSRT 2013;130:4–50.
[27] Shillings A., Ball S., Barber M., Tennyson J., Jones R. An upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list, Atmos Chem Phys 2011;10:23345–80.
[31] Gordon I.E., Rothman L.S., Hill C., Kochanov R.V., Tan Y., Bernath P.F., Birk M., et al. The HITRAN 2016 molecular spectroscopic database. JQSRT 2017;203:3–69.

2 x 1 1600 x 640
2019
Igor Ptashnik, Tatyana E. Klimeshina, Alexander A. Solodov, Andrei A. Vigasin,
Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 μm bands,
Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, Volume 228, Pages 97-105,
DOI: 10.1016/j.jqsrt.2019.02.024.

Figure 2. Example of pure water vapour continuum cross-section spectra within the 1600 and 3600 cm–1 bands, retrieved from high-resolution Fourier-transform spectra at below room temperatures [25] (solid circles) and at room and higher temperatures [24] (empty circles). Uncertainty in the retrieved continuum is shown for 288.5°К (15.35°C). The MT_CKD-3.2 self-continuum model [28] is also shown for comparison.
[24] Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., Williams R.G. Laboratory measurements of the water vapor continuum in the 1200–80 00 cm–1 region between 293K and 351K. J Geophys Res 2009;114:D21301
[25] Ptashnik I.V., Klimeshina T.E., Petrova T.M., Solodov A.A., Solodov A.M. Water vapor continuum absorption in the 2.7 and 6.25μm bands at decreased temperatures. Atmos Oceanic Opt 2016;29(3):211–15.
[28] Mlawer E., Payne V., Moncet J.L., Delamere M., Alvarado M., Tobin D. Development and evaluation of the MT_CKD model of continuum absorption. Philos Trans Royal Soc A 2012;370:2520–56.
 

2 x 1 1600 x 640
2019
Igor Ptashnik, Tatyana E. Klimeshina, Alexander A. Solodov, Andrei A. Vigasin,
Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 μm bands,
Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, Volume 228, Pages 97-105,
DOI: 10.1016/j.jqsrt.2019.02.024.

Figure 5. Example of fitting of b- (green) + q-dimer (grey) model spectra to the experimental continuum, obtained in this work at different temperatures. The resulting total model (sum of b- and q-dimer) absorption is shown in red. For more accurate fitting, the wavenumbers of stable WD transition at 3597 and 3730 cm–1 [12] were shifted to 3616 and 3717 cm–1 respectively. The νi(PA) and νi(PD) on the top panels denote respectively proton-acceptor and proton-donor H2O unit in WD, while i = 1,2,3 mean correspondingly symmetric stretching, bending, and asymmetric stretching oscillations in the water unit. The values of Kq and Kb (in atm–1) that lead to a best fit are shown in the legends of each frame. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

2 x 4 1600 x 1920
2019
Igor Ptashnik, Tatyana E. Klimeshina, Alexander A. Solodov, Andrei A. Vigasin,
Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 μm bands,
Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, Volume 228, Pages 97-105,
DOI: 10.1016/j.jqsrt.2019.02.024.

Figure 6. Equilibrium constants of the bound (left panel) and quasibound (right panel) water dimers derived in this work from fitting the model in Eq. (3) to experimental continua for two different absorption bands. K b values retrieved from spectroscopic measurements in microwaves by Serov et al., theoretical calculations by Buryak and Vigasin, and modified Kb values from Scribano et al. calculations (see the text for details) are shown for comparison. The error bars represent the error in the experimental data on the derived continuum and error in fitting the model to the experimental data.
Buryak I., Vigasin A.A. Classical calculation of the equilibrium constants for true bound dimers using complete potential energy surface. J Chem Phys 2015;143:234304–8
Scribano Y., Goldman N., Saykally R.J., Leforestier C. Water dimers in the atmosphere III: equilibrium constant from a flexible potential. J Phys Chem 2006;110:5411-19.
Serov E.A. , Koshelev M.A. , Odintsova T.A. , Parshin V.V. , Tretyakov M.Yu. Rotationally resolved water dimer spectra in atmospheric air and pure water vapour in the 188–258 GHz range. Phys. Chem. Chem. Phys., 2014;16(47):26221–33

2 x 1 1600 x 480
2019
Igor Ptashnik, Tatyana E. Klimeshina, Alexander A. Solodov, Andrei A. Vigasin,
Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 μm bands,
Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, Volume 228, Pages 97-105,
DOI: 10.1016/j.jqsrt.2019.02.024.

Figure 7. Total equilibrium constant (Kb+q), derived in this work. The data from Tretyakov et al. [44] , Ruscic [43] and Leforestier [42] are also shown for comparison. Thick grey line shows the ratio (right axis) of the total equilibrium constant derived from fitting in this work to that derived in [44] from SVC.

[42] Leforestier C. Water dimer equilibrium constant calculation: a quantum formulation including metastable states. J Chem Phys 2014;140:074106.
[43] Ruscic B. Active thermochemical tables: water and water dimer. J Phys Chem A 2013;117(46):11940-53.
[44] Tretyakov M.Yu., Serov E.A., Odintsova T.A. Equilibrium thermodynamic state of water vapour and the collisional interaction of molecules. Radiophys Quant Electron 2012;54(10):700-16

1 x 2 800 x 960

строк от
Всего строк 151


INTAS grants 00-189, 03-51-3394, гранты РФФИ 02-07-90139, 05-07-90196, 08-07-00318, 13-07-00411